
 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 1 of 70

CANopen Library Toolset

Development Support SW –
Software User Manual

CAN-N7S-CDSDP-SUM rev. 1.2

N7 SPACE SP. Z O.O.

Prepared by Date and Signature

Konrad Grochowski

Verified by

Mateusz Dyrdół

Approved by

Seweryn Ścibior

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 2 of 70

Table of Contents

1 Introduction ... 5

2 Applicable and reference documents ... 6

2.1 Applicable documents .. 6

2.2 Reference documents ... 6

3 Terms, definitions and abbreviated terms.. 7

4 Conventions ... 8

5 Purpose of the Software... 9

6 External view of the software .. 10

7 Operations environment .. 11

7.1 General ... 11

7.2 Hardware configuration ... 11

7.3 Software configuration ... 11

7.4 Operational constraints .. 11

8 Operations basics ... 12

9 Operations manual ... 13

9.1 General ... 13

9.2 Set‐up and initialization ... 13

9.2.1 CLI ... 13

9.2.2 GUI .. 13

9.3 Getting started .. 15

9.4 Mode selection and control .. 15

9.5 Normal operations .. 15

9.5.1 CLI ... 15

9.5.2 GUI .. 17

9.6 Normal termination .. 17

9.6.1 CLI ... 17

9.6.2 GUI .. 18

9.7 Error conditions ... 18

9.7.1 CLI ... 18

9.7.2 GUI .. 18

9.8 Recover runs .. 18

10 Reference manual .. 19

10.1 Introduction .. 19

10.2 Help method ... 19

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 3 of 70

10.3 Screen definitions and operations .. 19

10.3.1 Syntax highlighting ... 19

10.3.2 Outline ... 20

10.3.3 Network view .. 20

10.3.4 Linter ... 21

10.3.5 Snippets ... 21

10.3.6 Simulator integration ... 22

10.3.7 Network monitoring .. 23

10.4 Commands and operations ... 24

10.4.1 CLI .. 24

10.4.2 GUI .. 48

10.5 Error messages ... 48

10.5.1 CLI .. 48

10.5.2 GUI .. 48

11 Tutorial .. 49

11.1 Introduction .. 49

11.2 Getting started .. 49

11.2.1 CLI .. 49

11.2.2 GUI .. 49

11.3 Using the software on a typical task .. 49

11.3.1 CLI .. 49

11.3.2 GUI .. 61

12 Analytical Index .. 68

13 Lists ... 69

13.1 List of Tables ... 69

13.2 List of Figures .. 69

13.3 List of Listings ... 70

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 4 of 70

Change Record

Issue Date Change

1.0 2024-12-01 Initial release

1.1 2025-06-13 Update for TRR:

• dcfnetlint description updated

• New CLI tools described (dcfnetmon, dcfnetsim, dcfnetlintd)

• GUI manual added

1.2 2025-09-08 Update for CDR/QR:

• Reference documents updated

• 10.4.1 – CLI commands documentation updated with new

options

• Tutorials for “typical tasks” added (11.3)

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 5 of 70

1 Introduction

This document provides Software User Manual for the CANopen Development Support SW deliverable

of the CANopen Library Toolset project.

CANopen SW Library (CANSW) is an adaptation to space industry requirements of an existing and

field-tested open-source CANopen library (lely-core). CANSW is compliant with space-specific

CANopen extensions defined in ECSS-E-ST-50-15C and ECSS Criticality Category B software

requirements. It was developed in the scope of previous ESA activity and validated on representative

hardware platform (SAMV71). In the scope of this project its validation will be extended to include

other ARM (SAMRH71 and SAMRH707) and LEON3 (GR712RC) platforms.

CANopen Library Test Environment (CTESW) defines the environment required to execute CANopen

Library Test Suite (CTSSW) which is used to validate CANSW. CTSSW was developed in the scope

of previous ESA activity and is available as open-source software. In the scope of this project CTESW

will be extended to support new platforms and CTSSW will be executed on those.

CANopen Library Development Support Software (CDSSW) is a set of new tools developed in the

scope of this project and aiming at supporting design of CANopen networks using CANSW. It will

provide user with capabilities to verify semantic correctness of the multiple nodes building the CANopen

network and offer support with editing, monitoring and instrumenting of the network.

The Software User Manual is produced as a standalone document and structured according to the SUM

Document Requirements Definition (DRD) given in Annex H of ECSS-E-ST-40C [AD1].

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 6 of 70

2 Applicable and reference documents

2.1 Applicable documents

ID Title Reference Rev.

AD1 ECSS – Space engineering

Software

ECSS-E-ST-40C 6 March 2009

AD2 ECSS – CANbus extension protocol ECSS-E-ST-50-15C 1 May 2015

2.2 Reference documents

ID Title Reference Rev.

RD1 CANopen Library Toolset

Development Support SW –

Software Requirements Specification

CAN-N7S-CDSDP-SRS 1.3

RD2 CANopen Library Toolset

Development Support SW –

Software Design Document

CAN-N7S-CDSDP-SDD 1.4

RD3 CANopen Library Toolset

Development Support SW –

Software Configuration File

CAN-N7S-CDSDP-SCF 1.4

RD4 CAN in Automation –

Electronic data sheet specification

for CANopen

CiA 306 Version 1.3.0

RD5 CAN in Automation –

CANopen electronic device description,

Part 1: Electronic data sheet (EDS) and

device configuration file (DCF)

CiA 306-1 Version 1.4.0

RD6 CAN in Automation –

CANopen electronic device description,

Part 3: Network variable handling and

tool integration

CiA 306-3 Version 1.2.0

RD7 Language Server Protocol https://microsoft.github.io/language-server-

protocol/

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 7 of 70

3 Terms, definitions and abbreviated terms

This document acronyms and abbreviations are listed here under.

CAN Controller Area Network

CANDP CANopen SW Library Data Package

CANSW CANopen SW Library

CDSDP CANopen Development Support Data Package

CDSSW CANopen Development Support Software

CLI Command Line Interface

CTESW CANopen Test Environment Software

CTSDP CANopen Test Suite Data Package

CTSSW CANopen Test Suite Software

GUI Graphical User Interface

IDE Integrated Development Environment

N7S N7 Space

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 8 of 70

4 Conventions

This Software User Manual describes a project that includes Command Line Interface (CLI) application,

therefore it refers to various commands that can be executed in the terminal In order to make those

special blocks more readable, numerous style conventions are used. This chapter summarizes said

conventions.

Short commands and code fragments that are embedded inside normal text paragraphs use this style

with a monospace font.

Commands that are a bit longer or span multiple lines follow the following style:

$ command

Output (optional)

All commands listed in this manual were prepared and validated on Ubuntu 24.04 system. Any similar

Linux system should support all of the commands, it is recommended to use Ubuntu/Debian family.

Directory contents listings follow the same convention:

include/

└── subfolder/

 └── file

lib/

└── a generic comment about contents of lib/
share/

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 9 of 70

5 Purpose of the Software

CDSDP – Technical Data package for CANopen Development Support Software contains a single

software item – CDSSW itself. Its aim is to provide a set of helpful tool for CANopen network

engineering process. The complexity of CANopen Object Dictionary, especially in its “raw” version, as

stored in CANopen standard DCF files, requires a lot of attention and manual checks by the network

engineer. The DCF file itself provides only key-value pair. The interpretation of this data (roles of

various entries of the Object Dictionary) is provided in the CANopen standard itself ([RD4], extended

in draft [RD5]). CDSSW provides support on both levels – raw data stored in the Object Dictionary and

its interpretation in the context of the whole network. It provides user with capabilities to verify semantic

correctness of the multiple nodes building the CANopen network and offers support for editing of the

network. CDSSW can also use network description to provide capabilities related to monitoring and

instrumenting of the network.

The CDSSW includes features dedicated for ECSS specific CANopen protocol extensions, as defined

in ECSS-E-ST-50-15C [AD2].

The CDSSW consists of two application sets:

• Command Line Interface (CLI) tools – standalone command line applications:

o dcfnetlint – performs various syntactical and semantical checks of the CANopen

network consisting of multiple nodes, defined by DCF and CPJ [RD6] files.

o dcfnetmon – interprets captured CAN bus traffic using CANopen network definition

based on CPJ [RD6] file, generates report with description of all frames.

o dcfnetsim – simulates selected node from CANopen defined by CPJ [RD6] file, allows

for sending various messages on CAN bus.

o dcfnetlintd – Language Server Protocol [RD7] application for integrating CDSSW

features with any Integrated Development Environments (IDE) supporting LSP.

• dcfneteditor – Graphical User Interface (GUI) application – a plugin to Visual Studio Code IDE

– providing editing and monitoring capabilities for engineer working with such CANopen

network. It embeds features of all CLI tools and integrates them with GUI.

The CLI applications are designed to easily integrate with automation tools.

The GUI application aims to be convenient and intuitive editor for human end user.

Detailed software overview can be found in SRS [RD1] and SDD [RD2].

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 10 of 70

6 External view of the software

For convenience separate archives are provided for GUI and CLI applications.

Details on the composition of the software items, versions etc. can be found in data-pack software

configuration file SCF [RD3].

GUI (dcfneteditor) is distributed as single VSIX file – an archive in Visual Studio Code format, portable

to any machine supported by IDE itself.

CLI is distributed as a single archive (ZIP and BZIP2, the latter being recommended for Linux)

containing all tools binaries built for Linux operating system.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 11 of 70

7 Operations environment

7.1 General

CDSSW is designed to be executed on common end users personal computers – x86 machines.

CDSSW CLI are a standalone applications and requires only operating system console (can be executed

on “headless” system – one without any graphical user interface).

CDSSW GUI is a plugin for Visual Studio Code and requires it to be present on the target machine

(must be provided by the user), with matching version.

7.2 Hardware configuration

The minimum hardware requirements are:

• Intel Core 8th generation/AMD Ryzen 1st generation (or later) with 16 GB of available system

RAM.

Those requirements are driven by CDSSW GUI, the CLI application will run with less memory, but its

exact usage depends on the size of the checked network and processed traffic.

7.3 Software configuration

CDSSW GUI is a plugin to an existing IDE – Visual Studio Code. It must be preinstalled by the user in

compatible version (minimum 1.100). For GUI to operate with full capabilities, the dcfnetlintd – a

Language Server Protocol application from CDSSW CLI package – must be available on machine and

Visual Studio Code instance configured with its location.

7.4 Operational constraints

CDSSW does not provide any operational modes.

User should take care when working with CDSSW GUI – it offers both editing (static view of the

network) and monitoring (dynamic view). Dynamic views rely on the snapshot of static data definitions

– this helps to avoid data races and inconsistencies, but requires user to explicitly reload dynamic views

after applying modifications in static views.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 12 of 70

8 Operations basics

CDSSW CLI Linter (dcfnetlint) and Monitor (dcfnetmon) operates as a single shot command line

applications in batch mode – user provides input data, application is called, analyses the data without

any user interaction, and provides results as messages to standard output. User can customize the level

of analysis or output format using arguments to the application call.

CDSSW CLI Simulator (dcfnetsim) can also work in batch mode, but it depends on simulation plan

provided by the user. Plan can assume indefinite work or finish after performing some operations.

CSSSW CLI Daemon (dcfnetlintd) is a LSP server, operating as long as user requires it to work. It uses

standard input and output to exchange LSP messages with client.

CDSSW GUI (dcfneteditor) is a extension to Visual Studio Code – a modern IDE (Integrated Development Environment)

offering user multiple ways of data presentation and manipulation. Various views might be used at once to edit data.

Figure 1 presents overview of the IDE with dcfneteditor plugin installed.

Figure 1 – CDSSW GUI overview

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 13 of 70

9 Operations manual

9.1 General

CDSSW consist of two types of applications:

• CLI (Command Line Interface), referenced as CDSSW CLI and including dcfnetlint,

dcfnetlintd, dcfnetmon, and dcfnetsim;

• GUI (Graphical User Interface) – dcfneteditor, referenced as CDSSW GUI.

Although CDSSW GUI embeds features of CDSSW CLI, those two offer different user experience

(command line versus graphical), hence each following chapter describes them separately.

9.2 Set‐up and initialization

9.2.1 CLI

CDSSW CLI setup requires unpacking the archive containing its binary distribution – see Listing 1.

User might want to add the directory to system search path (e.g. environment variable PATH). Following

examples will assume that the dcfnetlint application is available in search path, if not, user should prefix

all calls with path to the folder holding the executable itself.

Listing 1 – Unpacking CDSSW CLI from TAR BZIP2 file (recommended for Linux).

$ tar -xvf unzip CAN-N7S-CDSDP-CDSSW-cli-v1_0_0.tar.bz2 # assuming version 1.0.0

To ensure proper setup it is recommended to try to execute the application as show on Listing 2. Output

other than the one shown on the listing might indicate system incompatibility with the binary. All CLI

applications support --version argument and should produce similar output.

Listing 2 – Checking CDSSW CLI version.

$ dcfnetlint --version

dcfnetlint (CANopen Network Linter) v1.0.0

Copyright (C) 2024-2025 N7 Space sp. z o.o.

9.2.2 GUI

CDSSW GUI – dcfneteditor – is a plugin to Visual Studio Code IDE. The easiest way to install it is to

obtain it from Microsoft’s Marketplace: go to Extensions and then search for dcfneteditor on the

Marketplace – see Figure 2.

If necessary dcfneteditor can be installed “manually” from distributed VSIX file. Go to Extensions then

select Install from VSIX… from menu (see Figure 3) and choose proper CDSSW distribution file (e.g.

CAN-N7S-CDSDP-CDSSW-gui-v1_0_0.vsix).

CDSSW GUI requires CDSSW CLI to provide all its features (CDSSW GUI will execute without CLI,

but some features will not be available). Install CLI as described in 9.2.1 and then configure dcfneteditor

with paths to the CDSSW CLI tools using Visual Studio Code Settings window (see Figure 4).

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 14 of 70

Figure 2 – dcfneteditor installation from Marketplace.

Figure 3 – dcfnetlint manual installation.

Figure 4 – dcfneteditor settings inside Visual Studio Code.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 15 of 70

9.3 Getting started

After performing the actions described in the previous chapter no additional operations are required and

user can start using the CDSSW features. For tutorial refer to chapter 11.

9.4 Mode selection and control

N/A

9.5 Normal operations

9.5.1 CLI

9.5.1.1 dcfnetlint

Application works in batch mode – after execution it produces list of the issues found in the checked

network and exits. See Listing 3.

Listing 3 – Example dcfnetlint call.

$ dcfnetlint duplicated-sections-fields-names.dcf

duplicated-sections-fields-names.dcf:6:0: warning: Field 'Description' already defined in

line 3 [dcf-sections-fields-duplicates]

Each issue will be produced in a separate line. When no issues are found no output is produced.

Exit code of the application depends on the number of issues found – zero (interpreted by operating

system as success) when no issues were found, non-zero when any issue was found. This allows for

convenient integration with automation tools – non-zero exit code will indicate error in the network and

require use intervention.

9.5.1.2 dcfnetmon

Application works in batch mode – after execution it produces the traffic analysis report and exits. See

Listing 4. The default format of the report is a standalone HTML that can be opened in web browser.

Listing 4 – Example dcfnetmon call.

$ dcfnetmon --network=generic-network.cpj \

 --output=report.html \

 --format=file

 --timestamp=absolute

 candump.log

The report can be written to requested file or produced on the standard output. This allows for piping

the call to the monitor directly with candump call. Note that candump must exit via timeout in order to

generate the report. See Listing 5

Listing 5 – Example dcfnetmon call with candump.

$ sudo candump -T 5000 vcan-cdssw | \

 dcfnetmon --network=generic-network.cpj --output=report.html

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 16 of 70

Exit code of the application depends only on the correctness of the call – non-zero is reported only when

invalid arguments or files are passed to the application.

9.5.1.3 dcfnetsim

Application works by executing the simulation plan provided by the user in form of a YAML file.

During execution application reports current simulation state on standard output in human readable

form. See Listing 6.

Listing 6 – Example dcfnetsim call.

$ dcfnetsim --plan=sdo-upload.yml --interface=vcan-cdssw --slave-simulation

Found slave node 2 with DCF file generic-slave.dcf

Found master node 1 with DCF file generic-master.dcf
Starting simulator on CAN interface vcan-cdssw based on plan sdo-upload.yml
Slave simulator enabled!
Master node (ID: 1) created
Slave node (ID: 2) created
Resetting slave 2...
Resetting master...
SDO upload from node 2 @ 2000:00 started
Idling for 200ms...
SDO upload from node 2 @ 2000:00 completed, read value: 0x1234567890ABCDEF
Stopping the simulator!
Slave node (ID: 2) destroyed

MasterNode destroyed

The simulation length is user-defined – it can consist of a single message to be sent or involve

configuring emulated CANopen service operating as long as needed. Simulation consists of steps. Each

such step can be of any type supported by the simulation, and all steps are executed sequentially. Note

that step execution can change the state of the simulated node (e.g. some CANopen service becomes

enabled), so multiple long-running operation can be set-up simultaneously, even with linear execution

of the steps. Simulation will run indefinitely unless a “stop” step is used..

Exit code of the application depends on the correctness of the call, simulation plan and simulated nodes

configuration – non-zero is reported when invalid arguments or files are passed to the application, or

simulation encounters an error due to node configuration or plan’s fault (for example, trying to write a

value to non-existent object in node’s object dictionary may result in immediate stop and non-zero exit

code).

9.5.1.4 dcfnetlintd

Application is a daemon – it operates as LSP server and responds to LSP client requests with processed

data of the CANopen network definition. It can be used with any LSP supporting IDE to provide:

• linter (issue reporting)

• outline

• code autocompletion

Additionally, for custom clients (like the dcfneteditor) it can provide complete CANopen Network

overview (tree view of all nodes and object dictionaries).

The application communicates using standard input and standard output. It supports only a single client,

but the client can open as many files as needed. Server finishes upon request by client.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 17 of 70

9.5.2 GUI

CDSSW GUI is a plugin for Visual Studio Code. After installation, it will automatically activate when

a workspace with DCF/CPJ files is opened. When DCF or CPJ file is opened, it provides data for built-

in outline view, syntax highlighting and real-time linting. Detailed overview of the available views and

features can be found in 10.3.

9.6 Normal termination

9.6.1 CLI

9.6.1.1 dcfnetlint

Application always terminates after reporting the issues. The execution time depends on the complexity

of the analysed network and end-user machine, but should not exceed dozens of seconds.

Important note: non-zero exit code is to be expected when any issues are detected. It is still considered

nominal termination of the application itself, it points to the need of network inspection. Non-nominal

termination will also use non-zero exit code but accompanied by error message instead of issue list.

9.6.1.2 dcfnetmon

Application always terminates after producing the traffic analysis report. The execution time depends

on the number of frames to process, complexity of the network, and end-user machine, but for thousands

of frames should not exceed dozens of seconds.

Monitor exits with zero exit code (success) upon generating the report. Non-nominal termination will

result in non-zero exit code accompanied by error message provided on standard output.

9.6.1.3 dcfnetsim

The way application finishes nominally depends on the simulation plan provided as input to the

application. If the plan contains explicit stop simulation step, then the application finishes after

processing whole plan up to the “stop” step. Otherwise, the application will run and continue to execute

planned simulation, until user sends SIGINT (interrupt signal – Ctrl-C on standard Linux terminal).

After reception of the signal application will finish in nominal way.

The execution time of the application depends on the simulation plan provided by the user (and user

decision if plan has no explicit finish).

Simulator exits with zero exit code (success) upon finishing the simulation. Non-nominal termination

will result in non-zero exit code accompanied by error message provided on standard output.

9.6.1.4 dcfnetlintd

The dcfnetlintd is a daemon, meaning that it by design run indefinitely, serving responses to LSP client

requests. To finish it has receive SIGINT (interrupt signal) from the parent application (in LSP it is

usually the client that starts the server and maintains it as long as it needs it).

The application exits with non-zero exit code if the client did not requested closeup using dedicated LSP

messages before server was closed.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 18 of 70

9.6.2 GUI

CDSSW GUI is a plugin working inside the Visual Studio Code. The plugin terminates when the IDE

closes – upon request by the user.

9.7 Error conditions

9.7.1 CLI

Applications might fail if user provides it with invalid arguments. There are two common errors:

• arguments are not matching available list of arguments (misspelled, missing required argument,

mutually exclusive arguments used together etc.),

• files passed to the application cannot be accessed by it.

In both cases the CLI will finish with non-zero exit code and produce detailed message about the

encountered error, prefixed with dcfnetlint: ERROR: (the application name in the message

depends on the called tool). See example on Listing 7.

Listing 7 – Example of invalid CDSSW CLI call.

$ dcfnetlint a.dcf b.dcf

dcfnetlint: ERROR: Multiple files specified

Try 'dcfnetlint --help' for more information.

9.7.2 GUI

If invalid arguments are provided to one of CDSSW binaries via VSCode, it will display appropriate

error message with output from executed binary either in message box, or console output.

Figure 5 – Message with CDSSW tool call error

9.8 Recover runs

No dedicated actions are required – after resolving the issue the CLI application needs to be executed

again, while GUI might only need re-executing the requested task.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 19 of 70

10 Reference manual

10.1 Introduction

Basic operations can be found in chapter 9. This chapter provides detailed lists of available features.

10.2 Help method

Calling the CDSSW CLI with -h or --help argument will produce help message (and finish the

application execution). See example on Listing 8.

Listing 8 – Example of CDSSW CLI help call.

$ dcfnetlint --help

Usage: dcfnetlint [OPTIONS] [FILE]

Performs verification of the CANopen network configuration (CANopen Network Linter).

FILE must be a DCF file (single-node linter) or CPJ file (whole network linter).

FILE type is assumed based on .dcf or .cpj extension.

Available options:

 --help, -h Displays this help and exits

 --version, -v Displays version information and exits

 --checks=CHECKS Selects the subset of checks to perform

 This argument may appear multiple times

 Checks can be provided as a list, separated by `,`

 Checks can be disabled by prepending them with `-`

 Wildcards are accepted (e.g.: `dcf-*`)

 --list-all-checks Prints list of all supported checks and exits

 --list-enabled-checks Prints list of enabled checks and exits

 --node-id=NODEID Sets the integer value for $NODEID

 --dump-objdict Dumps the contents of object dictionary as DCF sections on standard

output and exits.

 --disable-non-std-time-types Disable the support of non-standard time-related types

(SCET/SUTC)

N7 Space sp. z o.o. <https://n7space.com>

10.3 Screen definitions and operations

This chapter applies only to the CDSSW GUI application.

10.3.1 Syntax highlighting

Figure 6: DCF and CPJ files code will be highlighted in the editor window (dcfnetlintd not required).

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 20 of 70

Figure 6 – Syntax highlighting of DCF file in Visual Studio Code

10.3.2 Outline

When DCF or CPJ file is opened and dcfnetlintd is connected to dcfneteditor, the Visual Studio Code

Outline window will be filled with tree view of all sections and entries in the file – see Figure 7.

Figure 7 – Outline view of DCF file in Visual Studio Code

10.3.3 Network view

If CPJ file is detected in current workspace, CANopen network view will be populated with data from

DCF files of network nodes – see Figure 8. Feature requires working dcfnetlind.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 21 of 70

Figure 8 – Network view in Visual Studio Code

Using network view, new objects can be added to nodes in the network by right clicking on the network

node – see Figure 9

Figure 9 – Adding new objects to node in network via VSCode

10.3.4 Linter

When dcfnetlintd is properly configured in Visual Studio Code, then any issue detected while editing

single DCF file, or while working in workspace containing CPJ network definition, will be reported and

shown in Problems window – see Figure 10.

Figure 10 – List of issues reported by dcfnetlintd in Visual Studio Code

10.3.5 Snippets

While editing the DCF file, autocompletion can be invoked to generate a pre-defined object as show on

Figure 11.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 22 of 70

Figure 11 – Autocompletion of DCF file in Visual Studio Code

10.3.6 Simulator integration

Plugin provides commands for running dcfnetsim and dcfnetmon inside IDE (Figure 12).

Figure 12 – Visual Studio Code commands for running monitor and simulator

To run network simulation, trigger “Run dcfnetsim” command. If the editor is currently focused on a

simulation plan file, it will try to execute it – otherwise it will ask for plan file. Additionally, it will

require a CAN interface name to run simulation on (Figure 13), and simulation mode (slave simulation

can be either enabled – to simulate whole network, or disabled – to simulate only master node – Figure

14.

Figure 13 – Simulation interface selection dialog

Figure 14 – Simulation mode selection dialog

After providing all required information, dcfnetsim will be executed with appropriate arguments in the

integrated terminal (Figure 15).

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 23 of 70

Figure 15 – dcfnetsim output in integrated Visual Studio Code terminal

10.3.7 Network monitoring

Plugin provides commands for running dcfnetsim and dcfnetmon inside IDE (Figure 12).

Network monitor can be launched in similar way, by specifying the path to traffic log in candump format

(Figure 16), path to CPJ file describing the network (Figure 17), and format of traffic log (Figure 18 and

Figure 19) – candump has two formats of output (to file and to console) and couple of timestamp formats.

Figure 16 – candump trace selection for dcfnetmon

Figure 17 – CPJ file selection for dcfnetmon

Figure 18 – candump log format selection for dcfnetmon

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 24 of 70

Figure 19 – candump timestamp format selection for dcfnetmon

After providing all required information, dcfnetmon will be used to generate HTML report of the

traffic and it will be displayed in Visual Studio Code window (Figure 20).

Figure 20 – Generated report from dcfnetmon in Visual Studio Code

10.4 Commands and operations

10.4.1 CLI

10.4.1.1 dcfnetlint

CDSSW dcfnetlint CLI call consist of two groups of command line arguments: options and files.

Table 1 lists available options.

Linter determines the type of the analysis it has to perform using the files extensions:

• .dcf – “single node” analysis (analyses correctness of the single DCF file),

• .cpj – “complete network” analysis (checks each node in the network and their consistency).

Those analyses differ by the set of default checks performed (full network checks cannot be performed

on a single node) and applicable options.

Table 1 – dcfnetlint CLI options.

Option Description
-h,--help Prints help message and finishes CDSSW execution.
-v,--version Prints CDSSW version and finishes its execution.
--checks=<CHECKS> Selects the subset of checks to be performed (all are

enabled by default).

Checks are identified by their name as in Table 2.

Checks can be provided as a list, separated by comma.

Checks can be disabled by prepending them with `-`.

Wildcards are accepted (e.g.: `dcf-*`)
--list-all-checks Prints list of all supported checks and exits (see Table

2).
--list-enabled-checks Prints list of enabled checks (evaluates --checks

switch) and exits.
--node-id=<NODE-ID> DCF analysis only.

Determines NODEID to be used when resolving node

depended values in the DCF.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 25 of 70

Option Description

In network analysis, the NODEID is obtained from

network definition(CPJ file.
--dump-objdict Dumps the contents of object dictionary as DCF

sections on standard output and exits
--disable-non-std-time-types Disable the support of non-standard ECSS time-related

types (SCET/SUTC)

Table 2 – Linter checks.

Check Description

dcf-sections-names All DCF sections' names are consistent with DCF format.

Allowed names:

- FileInfo

- DeviceComissioning

- DeviceInfo

- DummyUsage

- Comments

- MandatoryObjects

- OptionalObjects

- ManufacturerObjects

- object identifier (with optional Name or Value suffix)

- sub-object identifier (object identifier, "sub", index)

dcf-sections-duplicates All DCF sections' names are unique.

dcf-sections-fields-duplicates All DCF fields' names are unique within their section.

dcf-fileinfo-names All DCF fields' names for FileInfo section are consistent with

DCF format.

Allowed names:

- FileName

- FileVersion

- FileRevision

- EDSVersion

- Description

- CreationTime

- CreationDate

- CreatedBy

- ModificationTime

- ModificationDate

- ModifiedBy

dcf-fileinfo-fileversion-range FileVersion DCF field value is in accepted range (UNSIGNED8).

dcf-fileinfo-filerevision-range FileRevision DCF field value is in accepted range

(UNSIGNED8).

dcf-fileinfo-edsversion-value EDSVersion DCF field value is equal to 4.0.

dcf-fileinfo-description-length Description DCF field value is not longer that 243 characters.

dcf-fileinfo-creationtime-value CreationTime DCF field value is consistent with DCF format

("hh:mm(AM|PM)").

dcf-fileinfo-creationdate-value CreationDate DCF field value is consistent with DCF format

("mm-dd-yyyy").

dcf-fileinfo-createdby-length CreatedBy DCF field value is not longer that 245 characters.

dcf-fileinfo-modificationtime-value ModificationTime DCF field value is consistent with DCF format

("hh:mm(AM|PM)").

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 26 of 70

Check Description

dcf-fileinfo-modificationdate-value ModificationDate DCF field value is consistent with DCF format

("mm-dd-yyyy").

dcf-fileinfo-modifiedby-length ModifiedBy DCF field value is not longer that 244 characters.

dcf-deviceinfo-names All DCF fields' names for DeviceInfo section are consistent with

DCF format.

Allowed names:

 - VendorName

 - VendorNumber

 - ProductName

 - ProductNumber

 - RevisionNumber

 - OrderCode

 - BaudRate_10

 - BaudRate_20

 - BaudRate_50

 - BaudRate_125

 - BaudRate_250

 - BaudRate_500

 - BaudRate_800

 - BaudRate_1000

 - SimpleBootUpMaster

 - SimpleBootUpSlave

 - Granularity

 - DynamicChannelsSupported

 - GroupMessaging

 - NrOfRxPDO

 - NrOfTxPDO

 - LSS_Supported

 - CompactPDO

dcf-deviceinfo-missing DeviceInfo DCF section is provided.

dcf-deviceinfo-vendorname-missing VendorName DCF field is provided.

dcf-deviceinfo-vendorname-length VendorName DCF field value is not longer that 244.

dcf-deviceinfo-vendornumber-missing VendorNumber DCF field is provided.

dcf-deviceinfo-vendornumber-range VendorNumber DCF field value is in accepted range

(UNSIGNED32).

dcf-deviceinfo-vendornumber-consistency VendorNumber DCF field value and identity object (1018h) value

at index 01h are equal.

dcf-deviceinfo-productname-length ProductName DCF field value is not longer that 243.

dcf-deviceinfo-productnumber-consistency ProductNumber DCF field value and identity object (1018h)

value at index 02h are equal.

dcf-deviceinfo-productnumber-range ProductNumber DCF field value is in accepted range

(UNSIGNED32).

dcf-deviceinfo-revisionumber-consistency RevisionNumber DCF field value and identity object (1018h)

value at index 03h are equal.

dcf-deviceinfo-revisionumber-range RevisionNumber DCF field value is in accepted range

(UNSIGNED32).

dcf-deviceinfo-ordercode-length OrderCode DCF field value is not longer that 245.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 27 of 70

Check Description

dcf-deviceinfo-baudrate10-range

dcf-deviceinfo-baudrate20-range

dcf-deviceinfo-baudrate50-range

dcf-deviceinfo-baudrate125-range

dcf-deviceinfo-baudrate250-range

dcf-deviceinfo-baudrate500-range

dcf-deviceinfo-baudrate800-range

dcf-deviceinfo-baudrate1000-range

BaudRate_N DCF field value is in accepted range (BOOLEAN).

dcf-deviceinfo-simplebootupmaster-range SimpleBootUpMaster DCF field value is in accepted range

(BOOLEAN).

dcf-deviceinfo-simplebootupslave-range SimpleBootUpSlave DCF field value is in accepted range

(BOOLEAN).

dcf-deviceinfo-granularity-range Granularity DCF field value is in accepted range [0,64]..

dcf-deviceinfo-groupmessaging-range GroupMessaging DCF field value is in accepted range

(BOOLEAN).

dcf-deviceinfo-nrofrxpdo-range NrOfRXPDO DCF field value is in accepted range

(UNSIGNED16).

dcf-deviceinfo-nroftxpdo-range NrOfTXPDO DCF field value is in accepted range

(UNSIGNED16).

dcf-deviceinfo-lsssupported-range LSS_Supported DCF field value is in accepted range

(BOOLEAN).

dcf-deviceinfo-compactpdo-range CompactPDO DCF field value is in accepted range

(UNSIGNED32).

dcf-devicecomissioning-names All DCF fields' names for DeviceComissioning section are

consistent with DCF format.

Allowed names:

 - NodeID

 - NodeName

 - NodeRefd

 - Baudrate

 - NetNumber

 - NetworkName

 - NetRefd

 - CANopenManager

 - LSS_SerialNumber

dcf-devicecomissioning-nodeid-range NodeID DCF field value is in accepted range (UNSIGNED8).

dcf-devicecomissioning-nodeid-missing NodeID DCF field is provided.

dcf-devicecomissioning-nodename-length NodeName DCF field value is not longer than 246 characters.

dcf-devicecomissioning-noderefd-length NodeRefD DCF field value is not longer than 249 characters.

dcf-devicecomissioning-baudrate-range Baudrate DCF field value is in accepted range (UNSIGNED16).

dcf-devicecomissioning-netnumber-range NetNumber DCF field value is in accepted range

(UNSIGNED32).

dcf-devicecomissioning-networkname-length NetworkName DCF field value is not longer than 243 characters.

dcf-devicecomissioning-netrefd-length NetRefD DCF field value is not longer than 249 characters.

dcf-devicecomissioning-canopenmanager-range CANopenManager DCF field value is in accepted range

(BOOLEAN).

dcf-devicecomissioning-lssserialnumber-range LSS_SerialNumber DCF field value is in accepted range

(UNSIGNED32).

dcf-deviceinfo-lssserialnumber-consistency LSS_SerialNumber DCF field value and identity object (1018h)

value at index 04h are equal.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 28 of 70

Check Description

dcf-dummyusage-names All DCF fields' names for DummyUsage section are consistent

with DCF format.

Allowed names:

 - Dummy0001

 - Dummy0002

 - Dummy0003

 - Dummy0004

 - Dummy0005

 - Dummy0006

 - Dummy0007

 - Dummy0012

 - Dummy0013

 - Dummy0014

 - Dummy0014

 - Dummy0015

 - Dummy0016

 - Dummy0018

 - Dummy0019

 - Dummy001A

 - Dummy001B

dcf-dummyusage-dummy-range DummySection's DCF fields' values are in accepted range

(BOOLEAN).

dcf-comments-names All DCF fields' names for Comments section are consistent with

DCF format.

Allowed names:

 - Lines

 - LineN, where N is a decimal number

dcf-comments-lines-missing Lines DCF field is provided.

dcf-comments-lines-range Lines DCF field value is in accepted range (UNSIGNED16).

dcf-comments-line-length LineN DCF field value is not longer than 249 characters.

dcf-comments-line-consistency All LineN fields of Comments sections are consistent with Lines

field value. The LineN fields shall use consecutive numbers for

N, starting form 1 up to the value of Lines field.

dcf-manadatoryobjects-names All DCF fields' names for MandatoryObjects section are

consistent with DCF format.

Allowed names:

 - SupportedObjects

 - N, where N is a decimal number

dcf-manadatoryobjects-missing MandatoryObjects DCF section is provided.

dcf-manadatoryobjects-supportedobjects-

missing

SupportedObjects DCF field is provided for MandatoryObjects

section.

dcf-manadatoryobjects-supportedobjects-

consistency

All fields of MandatoryObjects section are consistent with

SupportedObjects field value. The fields shall use consecutive

numbers for N, starting form 1 up to the value of

SupportedObjects field.

dcf-manadatoryobjects-fields-range MandatoryObjects fields' values are in accepted range

(UNSIGNED16).

dcf-manadatoryobjects-fields-required MandatoryObjects section contains at least 1000h, 1001h and

1018h objects.

dcf-manadatoryobjects-consistency All objects listed in MandatoryObjects section are defined in the

DCF.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 29 of 70

Check Description

dcf-optionalobjects-names All DCF fields' names for OptionalObjects section are consistent

with DCF format.

Allowed names:

 - SupportedObjects

 - N, where N is a decimal number

dcf-optionalobjects-missing OptionalObjects DCF section is provided.

dcf-optionalobjects-supportedobjects-missing SupportedObjects DCF field is provided for OptionalObjects

section.

dcf-optionalobjects-supportedobjects-

consistency

All fields of OptionalObjects section are consistent with

SupportedObjects field value. The fields shall use consecutive

numbers for N, starting form 1 up to the value of

SupportedObjects field.

dcf-optionalobjects-fields-range OptionalObjects fields' values are in accepted range

(UNSIGNED16).

dcf-optionalobjects-consistency All objects listed in OptionalObjects section are defined in the

DCF.

dcf-manufacturerobjects-names All DCF fields' names for ManufacturerObjects section are

consistent with DCF format.

Allowed names:

 - SupportedObjects

 - N, where N is a decimal number

dcf-manufacturerobjects-missing ManufacturerObjects DCF section is provided.

dcf-manufacturerobjects-supportedobjects-

missing

SupportedObjects DCF field is provided for ManufacturerObjects

section.

dcf-manufacturerobjects-supportedobjects-

consistency

All fields of ManufacturerObjects section are consistent with

SupportedObjects field value. The fields shall use consecutive

numbers for N, starting form 1 up to the value of

SupportedObjects field.

dcf-manufacturerobjects-fields-range ManufacturerObjects fields' values are in accepted range

(UNSIGNED16).

dcf-manufacturerobjects-consistency All objects listed in ManufacturerObjects section are defined in

the DCF.

dcf-object-consistency All objects defined in the DCF are listed in MandatoryObjects,

OptionalObjects or ManufacturerObjects sections.

dcf-object-dataobjects-forbidden Defined objects do not use indexes for data types [0x0000,

0x0FFF].

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 30 of 70

Check Description

dcf-object-names All DCF fields' names for an object are consistent with DCF

format.

The allowed names shall be:

 - SubNumber

 - ParameterName

 - ObjectType

 - DataType

 - AccessType

 - LowLimit

 - HighLimit

 - DefaultValue

 - PDOMapping

 - ObjFlags

 - CompactSubObj

 - ParameterValue

 - UploadFile

 - DownloadFile

 - Denotation

 - ParamRefd

dcf-object-parametername-missing ParameterName DCF field is provided for object and sub-object

sections.

dcf-object-parametername-length ParameterName DCF field value is not longer that 241.

dcf-object-objecttype-values ObjectType field values is in the allowed set.

Allowed values:

 - 00h for NULL

 - 02h for DOMAIN

 - 05h for DEFTYPE

 - 06h for DEFSTRUCT

 - 07h for VAR

 - 08h for ARRAY

 - 09h for RECORD

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 31 of 70

Check Description

dcf-object-datatype-values DataType field values is in the allowed set.

The allowed values shall be:

 - 0x0001 for BOOLEAN

 - 0x0002 for INTEGER8

 - 0x0003 for INTEGER16

 - 0x0004 for INTEGER32

 - 0x0005 for UNSIGNED8

 - 0x0006 for UNSIGNED16

 - 0x0007 for UNSIGNED32

 - 0x0008 for REAL32

 - 0x0009 for VISIBLE_STRING

 - 0x000A for OCTET_STRING

 - 0x000B for UNICODE_STRING

 - 0x000C for TIME_OF_DAY

 - 0x000D for TIME_DIFF

 - 0x000F for DOMAIN

 - 0x0010 for INTEGER24

 - 0x0011 for REAL64

 - 0x0012 for INTEGER40

 - 0x0013 for INTEGER48

 - 0x0014 for INTEGER56

 - 0x0015 for INTEGER64

 - 0x0016 for UNSIGNED24

 - 0x0018 for UNSIGNED40

 - 0x0019 for UNSIGNED48

 - 0x001A for UNSIGNED56

 - 0x001B for UNSIGNED64

 - optionally value configured by user for TIME_SCET

 - optionally value configured by user for TIME_SUTC

dcf-object-datatype-var-missing DataType DCF field is provided for object or sub-object of type

VAR.

dcf-object-datatype-defstruct-missing DataType DCF field is provided for object of type DEFSTRUCT

and CompactSubObj option enabled.

dcf-object-datatype-array-missing DataType DCF field is provided for object of type ARRAY and

CompactSubObj option enabled.

dcf-object-datatype-record-missing DataType DCF field is provided for object of type RECORD and

CompactSubObj option enabled.

dcf-object-datatype-defstruct-forbidden DataType DCF field is not provided for object of type

DEFSTRUCT and CompactSubObj option disabled.

dcf-object-datatype-array-forbidden DataType DCF field is not provided for object of type ARRAY

and CompactSubObj option disabled.

dcf-object-datatype-record-forbidden DataType DCF field is not provided for object of type RECORD

and CompactSubObj option disabled.

dcf-object-datatype-domain-consistency DataType DCF field is consistent with object type DOMAIN.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 32 of 70

Check Description

dcf-object-accesstype-values AccessType field value is in the allowed set.

The allowed values shall be:

 - ro for "read only"

 - wo for "write only"

 - rw for "read/write"

 - rww for "read/write on process input"

 - rww for "read/write on process output"

 - const for "constant value"

dcf-object-accesstype-var-missing AccessType DCF field is provided for object or sub-object of type

VAR.

dcf-object-accesstype-defstruct-missing AccessType DCF field is provided for object of type

DEFSTRUCT and CompactSubObj option enabled.

dcf-object-accesstype-array-missing AccessType DCF field is provided for object of type ARRAY and

CompactSubObj option enabled.

dcf-object-accesstype-record-missing AccessType DCF field is provided for object of type RECORD

and CompactSubObj option enabled.

dcf-object-accesstype-defstruct-forbidden AccessType DCF field is not provided for object of type

DEFSTRUCT and CompactSubObj option disabled.

dcf-object-accesstype-array-forbidden AccessType DCF field is not provided for object of type ARRAY

and CompactSubObj option disabled.

dcf-object-accesstype-record-forbidden AccessType DCF field is not provided for object of type

RECORD and CompactSubObj option disabled.

dcf-object-defaultvalue-boolean-range

dcf-object-defaultvalue-integer8-range

dcf-object-defaultvalue-integer16-range

dcf-object-defaultvalue-integer24-range

dcf-object-defaultvalue-integer32-range

dcf-object-defaultvalue-integer40-range

dcf-object-defaultvalue-integer48-range

dcf-object-defaultvalue-integer56-range

dcf-object-defaultvalue-integer64-range

dcf-object-defaultvalue-unsigned8-range

dcf-object-defaultvalue-unsigned16-range

dcf-object-defaultvalue-unsigned24-range

dcf-object-defaultvalue-unsigned32-range

dcf-object-defaultvalue-unsigned40-range

dcf-object-defaultvalue-unsigned48-range

dcf-object-defaultvalue-unsigned56-range

dcf-object-defaultvalue-unsigned64-range

dcf-object-defaultvalue-real32-range

dcf-object-defaultvalue-real64-range

DefaultValue DCF field value is in allowed range for an object

with specified data type.

dcf-object-defaultvalue-defstruct-forbidden DefaultValue DCF field is not provided for object of type

DEFSTRUCT and CompactSubObj option disabled.

dcf-object-defaultvalue-array-forbidden DefaultValue DCF field is not provided for object of type

ARRAY and CompactSubObj option disabled.

dcf-object-defaultvalue-record-forbidden DefaultValue DCF field is not provided for object of type

RECORD and CompactSubObj option disabled.

dcf-object-defaultvalue-null-forbidden DefaultValue DCF field is not provided for object of type NULL.

dcf-object-pdomapping-range PDOMapping field value is in accepted range (BOOLEAN).

dcf-object-pdomapping-defstruct-forbidden PDOMapping DCF field is not provided for object of type

DEFSTRUCT and CompactSubObj option disabled.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 33 of 70

Check Description

dcf-object-pdomapping-array-forbidden PDOMapping DCF field is not provided for object of type

ARRAY and CompactSubObj option disabled.

dcf-object-pdomapping-record-forbidden PDOMapping DCF field is not provided for object of type

RECORD and CompactSubObj option disabled.

dcf-object-pdomapping-domain-forbidden PDOMapping DCF field is not provided for object of type

DOMAIN.

dcf-object-subnumber-range SubNumber field value is in accepted range (UNSIGNED8).

dcf-object-subnumber-deftype-forbidden SubNumber DCF field is not provided for object of type

DEFTYPE.

dcf-object-subnumber-var-forbidden SubNumber DCF field is not provided for object of type VAR.

dcf-object-subnumber-defstruct-forbidden SubNumber DCF field is not provided for object of type

DEFSTRUCT and CompactSubObj option enabled.

dcf-object-subnumber-array-forbidden SubNumber DCF field is not provided for object of type ARRAY

and CompactSubObj option enabled.

dcf-object-subnumber-record-forbidden SubNumber DCF field is not provided for object of type

RECORD and CompactSubObj option enabled.

dcf-object-subnumber-defstruct-missing SubNumber DCF field is provided for object of type

DEFSTRUCT and CompactSubObj option disabled.

dcf-object-subnumber-array-missing SubNumber DCF field is provided for object of type ARRAY

and CompactSubObj option disabled.

dcf-object-subnumber-record-missing SubNumber DCF field is provided for object of type RECORD

and CompactSubObj option disabled.

dcf-object-subnumber-domain-forbidden SubNumber DCF field is not provided for object of type

DOMAIN.

dcf-object-subnumber-consistency SubNumber DCF filed value is consistent with sub-objects count.

dcf-object-lowlimit-boolean-range

dcf-object-lowlimit-integer8-range

dcf-object-lowlimit-integer16-range

dcf-object-lowlimit-integer24-range

dcf-object-lowlimit-integer32-range

dcf-object-lowlimit-integer40-range

dcf-object-lowlimit-integer48-range

dcf-object-lowlimit-integer56-range

dcf-object-lowlimit-integer64-range

dcf-object-lowlimit-unsigned8-range

dcf-object-lowlimit-unsigned16-range

dcf-object-lowlimit-unsigned24-range

dcf-object-lowlimit-unsigned32-range

dcf-object-lowlimit-unsigned40-range

dcf-object-lowlimit-unsigned48-range

dcf-object-lowlimit-unsigned56-range

dcf-object-lowlimit-unsigned64-range

dcf-object-lowlimit-real32-range

dcf-object-lowlimit-real64-range

LowLimit DCF field value is in allowed range for an object with

specified data type.

dcf-object-lowlimit-defstruct-forbidden LowLimit DCF field is not provided for object of type

DEFSTRUCT and CompactSubObj option disabled.

dcf-object-lowlimit-array-forbidden LowLimit DCF field is not provided for object of type ARRAY

and CompactSubObj option disabled.

dcf-object-lowlimit-record-forbidden LowLimit DCF field is not provided for object of type RECORD

and CompactSubObj option disabled.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 34 of 70

Check Description

dcf-object-lowlimit-domain-forbidden LowLimit DCF field is not provided for object of type DOMAIN.

dcf-object-lowlimit-null-forbidden LowLimit DCF field is not provided for object of type NULL.

dcf-object-highlimit-boolean-range

dcf-object-highlimit-integer8-range

dcf-object-highlimit-integer16-range

dcf-object-highlimit-integer24-range

dcf-object-highlimit-integer32-range

dcf-object-highlimit-integer40-range

dcf-object-highlimit-integer48-range

dcf-object-highlimit-integer56-range

dcf-object-highlimit-integer64-range

dcf-object-highlimit-unsigned8-range

dcf-object-highlimit-unsigned16-range

dcf-object-highlimit-unsigned24-range

dcf-object-highlimit-unsigned32-range

dcf-object-highlimit-unsigned40-range

dcf-object-highlimit-unsigned48-range

dcf-object-highlimit-unsigned56-range

dcf-object-highlimit-unsigned64-range

dcf-object-highlimit-real32-range

dcf-object-highlimit-real64-range

HighLimit DCF field value is in allowed range for an object with

specified data type.

dcf-object-highlimit-defstruct-forbidden HighLimit DCF field is not provided for object of type

DEFSTRUCT and CompactSubObj option disabled.

dcf-object-highlimit-array-forbidden HighLimit DCF field is not provided for object of type ARRAY

and CompactSubObj option disabled.

dcf-object-highlimit-record-forbidden HighLimit DCF field is not provided for object of type RECORD

and CompactSubObj option disabled.

dcf-object-highlimit-domain-forbidden HighLimit DCF field is not provided for object of type DOMAIN.

dcf-object-highlimit-null-forbidden HighLimit DCF field is not provided for object of type NULL.

dcf-object-parametervalue-boolean-range

dcf-object-parametervalue-integer8-range

dcf-object-parametervalue-integer16-range

dcf-object-parametervalue-integer24-range

dcf-object-parametervalue-integer32-range

dcf-object-parametervalue-integer40-range

dcf-object-parametervalue-integer48-range

dcf-object-parametervalue-integer56-range

dcf-object-parametervalue-integer64-range

dcf-object-parametervalue-unsigned8-range

dcf-object-parametervalue-unsigned16-range

dcf-object-parametervalue-unsigned24-range

dcf-object-parametervalue-unsigned32-range

dcf-object-parametervalue-unsigned40-range

dcf-object-parametervalue-unsigned48-range

dcf-object-parametervalue-unsigned56-range

dcf-object-parametervalue-unsigned64-range

dcf-object-parametervalue-real32-range

dcf-object-parametervalue-real64-range

ParameterValue DCF field value is in allowed range for an object

with specified data type.

dcf-object-parametervalue-defstruct-forbidden ParameterValue DCF field is not provided for object of type

DEFSTRUCT and CompactSubObj option disabled.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 35 of 70

Check Description

dcf-object-parametervalue-array-forbidden ParameterValue DCF field is not provided for object of type

ARRAY and CompactSubObj option disabled.

dcf-object-parametervalue-record-forbidden ParameterValue DCF field is not provided for object of type

RECORD and CompactSubObj option disabled.

dcf-object-parametervalue-domain-forbidden ParameterValue DCF field is not provided for object of type

DOMAIN.

dcf-object-parametervalue-null-forbidden ParameterValue DCF field is not provided for object of type

NULL.

dcf-object-lowlimit-highlimit-consistency LowLimit DCF field value is less than or equal to HighLimit

DCF field value.

dcf-object-defaultvalue-highlimit-consistency DefaultValue DCF field value is less than or equal to HighLimit

DCF field value.

dcf-object-defaultvalue-lowlimit-consistency DefaultValue DCF field value is greater than or equal to

LowLimit DCF field value.

dcf-object-parametervalue-highlimit-

consistency

ParameterValue DCF field value is less than or equal to

HighLimit DCF field value.

dcf-object-parametervalue-lowlimit-consistency ParameterValue DCF field value is greater than or equal to

LowLimit DCF field value.

dcf-object-compactsubobj-range CompactSubObj field value is in accepted range (UNSIGNED8).

dcf-object-compactsubobj-var-forbidden CompactSubObj DCF field is not provided for object of type

VAR.

dcf-object-compactsubobj-deftype-forbidden CompactSubObj DCF field is not provided for object of type

DEFTYPE.

dcf-object-compactsubobj-domain-forbidden CompactSubObj DCF field is not provided for object of type

DOMAIN.

dcf-object-value-consistency DCF section with Value suffix is defined only for object with

CompactSubObj field enabled.

dcf-object-value-names All DCF fields' names for object values section are consistent

with DCF format.

Allowed names:

 - NrOfEntries

 - N, where N is a decimal number

dcf-object-value-nrofentries-missing NrOfEntries DCF field is provided for object values section.

dcf-object-value-nrofentries-range NrOfEntries DCF field value in object value section is in accepted

range (UNSIGNED8).

dcf-object-value-nrofentries-consistency All fields of object value section are consistent with NrOfEntries

field value. The fields' count shall equal to the value of the

NrOfEntries field.

dcf-object-value-compactsubobj-consistency All fields of object value section are consistent with

CompactSubObj field value of the parent object.

dcf-object-name-consistency DCF section with Name suffix is defined only for object with

CompactSubObj field enabled.

dcf-object-name-names All DCF fields' names for object name section are consistent with

DCF format.

Allowed names:

 - NrOfEntries

 - N, where N is a decimal number

dcf-object-name-nrofentries-missing NrOfEntries DCF field is provided for object name section.

dcf-object-name-nrofentries-range NrOfEntries DCF field value in object name section is in accepted

range (UNSIGNED8).

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 36 of 70

Check Description

dcf-object-name-nrofentries-consistency All fields of object name section are consistent with NrOfEntries

field value.

The fields' count shall equal to the value of the NrOfEntries field.

dcf-object-name-compactsubobj-consistency All fields of object name section are consistent with

CompactSubObj field value of the parent object.

dcf-sub-parent-consistency Sub-objects are defined only for objects present in the DCF.

dcf-sub-compactsubobj-consistency Sub-objects are defined only for objects with disabled

CompactSubObj field in the DCF.

dcf-sub-objectype-consistency Sub-objects are defined only for DEFSTRUCT, RECORD and

ARRAY object types.

dcf-sub-00h-type Sub-object at index 0 is of type UNSIGNED8.

dcf-sub-00h-access Sub-object at index 0 is read only.

dcf-sub-00h-consistency Value sub-object at index 0 is consistent with sub-objects count.

dcf-sub-ffh-forbidden Sub-objects at index FFh are not defined.

od-1000h-objecttype Object 1000h has VAR object type.

od-1000h-datatype Object 1000h has UNSIGNED32 data type.

od-1000h-name Object 1000h has "Device type" name.

od-1000h-access Object 1000h has read-only access.

od-1000h-pdomapping Object 1000h is not mapped to PDO.

od-1000h-missing Object 1000h is present.

od-1001h-objecttype Object 1001h has VAR object type.

od-1001h-datatype Object 1001h has UNSIGNED8 data type.

od-1001h-name Object 1001h has "Error register" name.

od-1001h-access Object 1001h has read-only access.

od-1001h-missing Object 1001h is present.

od-1002h-objecttype Object 1002h has VAR object type.

od-1002h-datatype Object 1002h has UNSIGNED32 data type.

od-1002h-name Object 1002h has "Manufacturer status register" name.

od-1002h-access Object 1002h has read-only access.

od-1003h-objecttype Object 1003h has ARRAY object type.

od-1003h-datatype Object 1003h has UNSIGNED32 data type.

od-1003h-name Object 1003h has "Pre-defined error field" name.

od-1003h-access Object 1003h has read-only access.

od-1003h-pdomapping Object 1003h is not mapped to PDO.

od-1003h-number-of-errors Object 1003h has valid entry at sub-index 0

od-1003h-standard-error-field Object 1003h has valid entry at sub-index 1

od-1005h-objecttype Object 1005h has VAR object type.

od-1005h-datatype Object 1005h has UNSIGNED32 data type.

od-1005h-name Object 1005h has "COB-ID SYNC" name.

od-1005h-pdomapping Object 1005h is not mapped to PDO.

od-1005h-defaultvalue Object 1005h has 0x00000080 or 0x80000080 default value.

od-1006h-objecttype Object 1006h has VAR object type.

od-1006h-datatype Object 1006h has UNSIGNED32 data type.

od-1006h-name Object 1006h has "Communication cycle period" name.

od-1006h-pdomapping Object 1006h is not mapped to PDO.

od-1007h-objecttype Object 1007h has VAR object type.

od-1007h-datatype Object 1007h has UNSIGNED32 data type.

od-1007h-name Object 1007h has "Synchronous window length" name.

od-1007h-pdomapping Object 1007h is not mapped to PDO.

od-1008h-objecttype Object 1008h has VAR object type.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 37 of 70

Check Description

od-1008h-datatype Object 1008h has VISIBLE_STRING data type.

od-1008h-name Object 1008h has "Manufacturer device name" name.

od-1008h-access Object 1008h has constant access.

od-1008h-pdomapping Object 1008h is not mapped to PDO.

od-1009h-objecttype Object 1009h has VAR object type.

od-1009h-datatype Object 1009h has VISIBLE_STRING data type.

od-1009h-name Object 1009h has "Manufacturer hardware version" name.

od-1009h-access Object 1009h has constant access.

od-1009h-pdomapping Object 1009h is not mapped to PDO.

od-100Ah-objecttype Object 100Ah has VAR object type.

od-100Ah-datatype Object 100Ah has VISIBLE_STRING data type.

od-100Ah-name Object 100Ah has "Manufacturer software version" name.

od-100Ah-access Object 100Ah has constant access.

od-100Ah-pdomapping Object 100Ah is not mapped to PDO.

od-100Ch-objecttype Object 100Ch has VAR object type.

od-100Ch-datatype Object 100Ch has UNSIGNED16 data type.

od-100Ch-name Object 100Ch has "Guard time" name.

od-100Ch-pdomapping Object 100Ch is not mapped to PDO.

od-100Dh-objecttype Object 100Dh has VAR object type.

od-100Dh-datatype Object 100Dh has UNSIGNED8 data type.

od-100Dh-name Object 100Dh has "Life time factor" name.

od-100Dh-pdomapping Object 100Dh is not mapped to PDO.

od-1012h-ecss-compatibility Object 1012h is not supported by CANSW in ECSS compatibility

mode.

od-1012h-objecttype Object 1012h has VAR object type.

od-1012h-datatype Object 1012h has UNSIGNED32 data type.

od-1012h-name Object 1012h has "COB-ID time stamp message" name.

od-1012h-pdomapping Object 1012h is not mapped to PDO.

od-1013h-ecss-compatibility Object 1013h is not supported by CANSW in ECSS compatibility

mode.

od-1013h-objecttype Object 1013h has VAR object type.

od-1013h-datatype Object 1013h has UNSIGNED32 data type.

od-1013h-name Object 1013h has "high resolution time stamp" name.

od-1014h-objecttype Object 1014h has VAR object type.

od-1014h-datatype Object 1014h has UNSIGNED32 data type.

od-1014h-name Object 1014h has "COB-ID emergency message" name.

od-1014h-pdomapping Object 1014h is not mapped to PDO.

od-1014h-defaultvalue Object 1014h default value is consistent with the required format.

The check shall ensure that CAN-ID in the value is consistent

with "frame" bit value and that bit 30 is always zero.

od-1014h-parametervalue Object 1014h parameter value is consistent with the required

format.

The check shall ensure that CAN-ID in the value is consistent

with "frame" bit value and that bit 30 is always zero. The check

shall apply only if parameter value field is defined in DCF.

od-1015h-objecttype Object 1015h has VAR object type.

od-1015h-datatype Object 1015h has UNSIGNED16 data type.

od-1015h-name Object 1015h has "inhibit time EMCY" name.

od-1015h-pdomapping Object 1015h is not mapped to PDO.

od-1016h-objecttype Object 1016h has ARRAY object type.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 38 of 70

Check Description

od-1016h-datatype Object 1016h has UNSIGNED32 data type.

od-1016h-name Object 1016h has "Consumer heartbeat time" name.

od-1016h-pdomapping Object 1016h is not mapped to PDO.

od-1017h-objecttype Object 1017h has VAR object type.

od-1017h-datatype Object 1017h has UNSIGNED16 data type.

od-1017h-name Object 1017h has "Producer heartbeat time" name.

od-1017h-pdomapping Object 1017h is not mapped to PDO.

od-1018h-objecttype Object 1018h has RECORD object type.

od-1018h-datatype Object 1018h has Identity data type.

od-1018h-name Object 1018h has "Identity object" name.

od-1018h-access Object 1018h has read-only access.

od-1018h-pdomapping Object 1018h is not mapped to PDO.

od-1018h-missing Object 1018h is present.

od-1018h-00h-range Sub-object 1018h 00h has value in an allowed range [1,4].

od-1018h-01h-datatype Sub-object 1018h 01h has UNSIGNED32 data type.

od-1018h-01h-name Sub-object 1018h 01h has "Vendor-ID" name.

od-1018h-02h-datatype Sub-object 1018h 02h has UNSIGNED32 data type.

od-1018h-02h-name Sub-object 1018h 02h has "Product code" name.

od-1018h-03h-datatype Sub-object 1018h 03h has UNSIGNED32 data type.

od-1018h-03h-name Sub-object 1018h 03h has "Revision number" name.

od-1018h-04h-datatype Sub-object 1018h 04h has UNSIGNED32 data type.

od-1018h-04h-name Sub-object 1018h 04h has "Serial number" name.

od-1019h-objecttype Object 1019h has VAR object type.

od-1019h-datatype Object 1019h has UNSIGNED8 data type.

od-1019h-name Object 1019h has "Synchronous counter overflow value" name.

od-1019h-pdomapping Object 1019h is not mapped to PDO.

od-1019h-defaultvalue Object 1019h has default value in allowed range [2,240].

od-1019h-parametervalue Object 1019h has parameter value in allowed range [2,240].

od-1020h-objecttype Object 1020h has ARRAY object type.

od-1020h-datatype Object 1020h has UNSIGNED32 data type.

od-1020h-name Object 1020h has "Verify configuration" name.

od-1020h-pdomapping Object 1020h is not mapped to PDO.

od-1020h-highest-sub-index-supported Object 1020h has valid entry at sub-index 0

od-1020h-configuration-date Object 1020h has valid entry at sub-index 1

od-1020h-configuration-time Object 1020h has valid entry at sub-index 2

od-1028h-objecttype Object 1028h has ARRAY object type.

od-1028h-datatype Object 1028h has UNSIGNED32 data type.

od-1028h-name Object 1028h has "Emergency consumer" name.

od-1028h-pdomapping Object 1028h is not mapped to PDO.

od-1028h-highest-sub-index-supported Object 1028h has valid entry at sub-index 0

od-1028h-emergency-consumer-1 Object 1028h has valid entry at sub-index 1

od-1028h-emergency-consumer-x Object 1028h has valid entries at sub-indices [2, 7Fh]

od-1029h-objecttype Object 1029h has ARRAY object type.

od-1029h-datatype Object 1029h has UNSIGNED8 data type.

od-1029h-name Object 1029h has "Error behaviour" name.

od-1029h-pdomapping Object 1029h is not mapped to PDO.

od-1029h-highest-sub-index-supported Object 1029h has valid entry at sub-index 0

od-1029h-communication-error Object 1029h has valid entry at sub-index 1

od-1029h-profile-manufacturer-specific-error Object 1029h has valid entries at sub-indices [2, FEh]

od-1200h-objecttype Objects 1200h-127Fh have RECORD object type.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 39 of 70

Check Description

od-1200h-datatype Objects 1200h-127Fh have SDO parameter record data type.

od-1200h-name Objects 1200h-127Fh have "SDO server parameter" name.

od-1200h-00h-missing Sub-object 00h in objects 1200h-127Fh is present.

od-1200h-00h-range Sub-object 00h in objects 1200h-127Fh has value in an allowed

range.

The allowed range shall be [2] forObject 1200h and [2,3] for

objects 1201h-127Fh.

od-1200h-00h-name Sub-object 00h in objects 1200h-127Fh has "Highest sub-index

supported" name.

od-1200h-01h-missing Sub-object 01h in objects 1200h-127Fh is present.

od-1200h-01h-defaultvalue Sub-object 01h inObject 1200h has default value of 600h + Node-

ID.

od-1200h-01h-name Sub-object 01h in objects 1200h-127Fh has "COB-ID client ->

server (rx)" name.

od-1200h-02h-missing Sub-object 02h in objects 1200h-127Fh is present.

od-1200h-02h-defaultvalue Sub-object 02h inObject 1200h has default value of 580h + Node-

ID.

od-1200h-02h-name Sub-object 02h in objects 1200h-127Fh has "COB-ID server ->

client (tx)" name.

od-1200h-03h-range Sub-object 03h in objects 1200h-127Fh has value in an allowed

range [1, 7Fh], if present.

od-1200h-03h-name Sub-object 03h in objects 1200h-127Fh has "Node-ID of the SDO

client" name, if present.

od-1280h-objecttype Objects 1280h-12FFh have RECORD object type.

od-1280h-datatype Objects 1280h-12FFh have SDO Parameter data type.

od-1280h-name Objects 1280h-12FFh have "SDO client parameter" name.

od-1280h-00h-missing Sub-object 00h in objects 1280h-12FFh is present.

od-1280h-00h-range Sub-object 00h in objects 1280h-12FFh has value in an allowed

range [3].

od-1280h-00h-defaultvalue Sub-object 00h in objects 1280h-12FFh has default value od 3.

od-1280h-00h-name Sub-object 00h in objects 1280h-12FFh has "Highest sub-index

supported" name.

od-1280h-01h-missing Sub-object 01h in objects 1280h-12FFh is present.

od-1280h-01h-name Sub-object 01h in objects 1280h-12FFh has "COB-ID client ->

server (tx)" name.

od-1280h-02h-missing Sub-object 02h in objects 1280h-12FFh is present.

od-1280h-02h-name Sub-object 02h in objects 1280h-12FFh has "COB-ID server ->

client (rx)" name.

od-1280h-03h-missing Sub-object 03h in objects 1280h-12FFh is present.

od-1280h-03h-range Sub-object 03h in objects 1280h-12FFh has value in an allowed

range [1, 7Fh].

od-1280h-03h-name Sub-object 03h in objects 1280h-12FFh has "Node-ID of the SDO

server" name.

od-1400h-objecttype Objects 1400h-15FFh have RECORD object type.

od-1400h-datatype Objects 1400h-15FFh have PDO communication parameter

record data type.

od-1400h-name Objects 1400h-15FFh have "RPDO communication parameter"

name.

od-1400h-00h-missing Sub-object 00h in objects 1400h-15FFh is present.

od-1400h-00h-range Sub-object 00h in objects 1400h-15FFh has value in an allowed

range [2,6].

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 40 of 70

Check Description

od-1400h-01h-missing Sub-object 01h in objects 1400h-15FFh is present.

od-1400h-02h-missing Sub-object 02h in objects 1400h-15FFh is present.

od-1600h-objecttype Objects 1600h-17FFh have RECORD object type.

od-1600h-datatype Objects 1600h-17FFh have PDO mapping parameter record data

type.

od-1600h-name Objects 1600h-17FFh have "RPDO mapping parameter" name.

od-1600h-00h-missing Sub-object 00h in objects 1600h-17FFh is present.

od-1600h-01h-missing Sub-object 01h in objects 1600h-17FFh is present.

od-1600h-application-object-x-missing Objects 1600h-17FFh have valid entries at sub-indices [2, 40h]

od-1800h-objecttype Objects 1800h-19FFh have RECORD object type.

od-1800h-datatype Objects 1800h-19FFh have PDO communication parameter

record data type.

od-1800h-name Objects 1800h-19FFh have "TPDO communication parameter"

name.

od-1800h-00h-missing Sub-object 00h in objects 1800h-19FFh is present.

od-1800h-00h-range Sub-object 00h in objects 1800h-19FFh has value in an allowed

range [2,6].

od-1800h-01h-missing Sub-object 01h in objects 1800h-19FFh is present.

od-1800h-02h-missing Sub-object 02h in objects 1800h-19FFh is present.

od-1A00h-objecttype Objects 1A00h-1BFFh have RECORD object type.

od-1A00h-datatype Objects 1A00h-1BFFh have PDO mapping parameter record data

type.

od-1A00h-name Objects 1A00h-1BFFh have "TPDO mapping" name.

od-1A00h-00h-missing Sub-object 00h in objects 1A00h-1BFFh is present.

od-1A00h-01h-missing Sub-object 01h in objects 1A00h-1BFFh is present.

od-1A00h-application-object-x-missing Objects 1A00h-1BFFh have valid entries at sub-indices [2, 40h]

cpj-topology-section CPJ file contains exactly one Topology section.

cpj-topology-nodes-mandatory CPJ file contains exactly one Nodes key under the Topology

section.

cpj-topology-nodepresent-mandatory CPJ file contains valid number of NodeXPresent keys under the

Topology section.

cpj-topology-nodepresent-nodeid X in NodeXPresent represents a valid and unique device Node-ID

(1-127).

cpj-topology-nodedcfname-missing CPJ file contains a NodeXDCFName key for every node under

the Topology section.

cpj-topology-nodedcfname-nodeid X in NodeXDCFName represents a valid and unique device

Node-ID (1-127).

cpj-topology-existing-dcfs Each NodeXDCFName key refers to an existing .dcf file

node-1005h-missing Object 1005h is present if using synchronous PDO.

node-1006h-missing Object 1006h is present if required.

This check shall be applied to SYNC producers (based on bit 30

in the value of 1005h).

node-csdo-self-reference Defined SDO clients with static configuration are not referring to

SDO servers defined on the same node.

node-rpdo-comm-mapping-consistency 1600h-17FFh objects correspond to 1400h-15FFh objects

node-rpdo-mapped-objects-consistency 1600h-17FFh objects provide mapping definitions corresponding

to defined objects

node-tpdo-comm-mapping-consistency 1A00h-1BFFh objects correspond to 1800h-19FFh objects

node-tpdo-mapped-objects-consistency 1A00h-1BFFh objects provide mapping definitions corresponding

to defined objects

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 41 of 70

Check Description

net-nodeid-uniqueness There are no Node-ID duplications.

net-sync-one-producer There is exactly one SYNC producer.

net-sync-counter-overflow-consistency Check that the definition of the 1019h object is consistent across

producer and consumers

net-sync-counter-tpdo-consistency The 1019h object's value on the SYNC producer shall be the least

common multiple of all the TPDO transmission types used.

CheckSub-object 02h of TPDP communication parameter, if the

value is in range 01h f0h, then it is synchronous cyclic and shall

be collected, LCM of all collected values shall be value of 1019h

in sync producer, also verify if theSub-object 06 (sync start value)

is lower than value in sync producer.

net-heartbeat-matching-nodes Consumer heartbeat times should refer to Node-ID that are

heartbeat producers.

net-heartbeat-consumer-producer-time Consumer heartbeat times are greater than corresponding

producer heartbeat times.

net-emcy-matching-ids The Emergency consumer object refers to CAN-IDs of EMCY

producers.

net-sdo-matching-client-server For every SDO client with static configuration defined, there is be

a corresponding SDO server defined.

net-pdo-consistency Every defined RPDO matches a defined TPDO

net-pdo-mapping-consistency Every RPDO mapping matches a corresponding TPDO mapping.

net-ecss-redundancy-consistency Every node has a matching ECSS redundancy configuration

10.4.1.2 dcfnetmon

CDSSW dcfnetmon CLI call consist of two groups of command line arguments: options and file.

Table 3 lists available options.

Monitor can process standard input (when file argument is omitted) and output to standard output (when

--output option is omitted), but it can also work from file to file.

Providing the network definition (as CPJ file) via --network option is required.

Table 3 – dcfnetmon CLI options.

Option Description
-h,--help Prints help message and finishes CDSSW execution.
-v,--version Prints CDSSW version and finishes its execution.
--network=<CPJFILE> Use CPJFILE for interpretation of CAN bus traffic

(required).
--output=<OUTPUT> Use OUTPUT to save traffic report
--format=[auto|console|file] Sets the format of file to be parsed ('auto' by default,

which tries to detect the format based on first frame).

Output from candump differs from its log format.
--output-format=[html|text] Selects report format ('html' by default).
--

timestamp=[auto|none|absolute]

Sets the format of timestamp for parsed data ('auto' by

default, which tries to detect the format based on first

frame). See candump timestamp options.
--redundant-bus=<CANBUS> Name of the CAN bus from log file that should be

treated as redundant. Optional.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 42 of 70

10.4.1.3 dcfnetsim

CDSSW dcfnetsim CLI call consist of only of options, with two of them being required – network

interface and simulation plan.

Table 4 lists available options.

Simulation plan consists of simulation steps, executed in sequential manner. Listing 9 provides generic

layout of the simulation plan and Table 5 lists possible steps.

Table 4 – dcfnetsim CLI options.

Option Description
-h,--help Prints help message and finishes CDSSW execution.
-v,--version Prints CDSSW version and finishes its execution.
--plan=<PLAN> Use PLAN YAML file as simulation plan and config.

All paths specified inside simulation plan are relative to

the plan's directory
--interface=<INTERFACE> CAN interface to use for master node traffic.
--slave-simulation Enables slave node simulation.

By default, simulator runs in asingle (master) node

simulation mode, as configured in simulation plan - this

allows it to be plugged to existing CAN networks

without interfering with other nodes.

Using this argument switches the simulator into

network simulation mode, as it will simulate both the

master and all remaining (slave) nodes in the network.

Slave nodes will process CANopen events as

configured in their DCF files, e.g. will respond to SDO

transactions.

Listing 9 – Simulation plan layout.

config: # plan's configuration

 cpj-file: network.cpj # path to network file, relative to plan's path
 master-node-id: 1 # node-id of simulated node
steps: # list of steps
 - type: reset # every step has a type
 - type: send-can-frame
 # most steps require additional parameters
 can-id: 0x100
 data: [0x11, 0x22, 0x33]
 - type: schedule-can-frames

 period: 200
 delay: 500
 frames:
 - can-id: 0x42
 data: [0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF]
 - type: wait
 duration: 1000 # durations are typically measured in milliseconds
 - type: stop

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 43 of 70

Table 5 – dcfnetsim simulation plan steps.

Step Description

reset Triggers NMT reset of master node. If --slave-

simulation argument is used, also triggers NMT

reset of slave nodes.
wait Runs the simulation for specified amount of time,

processing CANopen events of master node.

Parameters:

• duration – time (in milliseconds) to run

simulation for.
stop Stops the simulation by triggering master node

deconfiguration. All steps after this one are ignored.
write-objdict Writes a value to master node’s object dictionary.

Parameters:

• index – object’s index

• subindex – object's subindex

• value-type – type of written value, one of

u8/i8/u16/i16/u32/i32/u64/i64

• value – value to be written

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 44 of 70

Step Description

send-can-frame Triggers transmission of custom or pre-defined CAN

frame.

Parameters:

• frame-type (optional) – if not provided or

set to custom, sends CAN frame defined by

custom frame parameters. Otherwise, sends

pre-defined frame specified by parameters

dependent of its kind. One of

custom/sync/nmt

Custom frame parameters:

• can-id – ID of the frame

• data – Data to transmit, up to 8 bytes.

• flags (optional) - CAN frame flags, in

numeric format.

Pre-defined frame parameters:

• sync – transmits SYNC frame

o can-id – ID of the SYNC frame

o counter (optional) – SYNC frame

counter

• nmt-command – transmits NMT command

o node-id – Node-ID of command

target

o command – Command to perform,

one of start/stop/enter-

preop/reset-node/reset-comm

• nmt-heartbeat – transmits NMT heartbeat

o node-id – Node-ID of simulated

node

o state – NMT state, one of boot-
up/stopped/operational/pre-
operational

• emcy – transmits EMCY frame
o cob-id – ID of the frame
o error-code – EMCY error code, 16-

bit value

o error-register – EMCY error

register, 8-bit value

o manufacturer-error-code –

optional, an array with up to 6 bytes.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 45 of 70

Step Description

schedule-can-frames Triggers transmission of custom or pre-defined CAN

frames based on a schedule.

Parameters:

• period – period between frame

transmissions, in milliseconds

• delay (optional) - delay of first frame, in

milliseconds.

• duration (optional) - how long the schedule

should last, in milliseconds

• limit (optional) - maximum number of

frames transmitted by this schedule

• repeat-mode (optional) - Specifies how the

schedule should behave after transmitting the

last frame

o no – schedule ends after sending last

frame

o last – last frame on the list is

transmitted repeatedly

o loop – schedule starts from the first

frame again

• frames – list of frames to send, defined as in

send-can-frame step.

enable-sync Enables SYNC production on master node.

Parameters:

• can-id – CAN ID of SYNC frames

• period – SYNC period, in milliseconds

• overflow (optional) - overflow value of

SYNC counter, SYNC is generated without

counter if this parameter is missing.
disable-sync Disables SYNC production on master node.

enable-tpdo Enables specified TPDO.

Parameters:

• pdo – PDO to activate

disable-tpdo Disables specified TPDO.

Parameters:

• pdo – PDO to deactivate

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 46 of 70

Step Description

set-tpdo-tx-type Configures transmission type for specified TPDO.

Parameters:

• pdo – PDO to configure

• tx-type – transmission type, accepts one of

following values

o acyclic – acyclic TPDO

transmission

o cyclic – transmission on specified

SYNC event, requires additional

parameters:

▪ cycle – SYNC cycle that

triggers TPDO transmission

o sync-rtr – RTR-driven

transmission on SYNC

o event – Event-driven transmission,

requires additional parameters:

event – event triggering the transmission, one of

rtr/manufacturer/device

trigger-tpdo Triggers a TPDO by generating an internal event.

Parameters:

• pdo – PDO to trigger, 0 to trigger all.

schedule-tpdo-event Schedules TPDO triggering based on a schedule.

Parameters:

• period – period between triggers, in

milliseconds

• delay (optional) - delay of first trigger, in

milliseconds.

• duration (optional) - how long the schedule

should last, in milliseconds

• limit (optional) - maximum number of

triggers generated by this schedule

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 47 of 70

Step Description

sdo-sync/async-download Starts SDO download to a remote server as a client

node. sdo-async-download does not complete

immediately, it runs in background until completion,

timeout, or simulation stops. sdo-sync-download

blocks the simulation until transaction is completed, or

timeout hits. Allows downloading data from files.

Synchronous download will usually be performed as

block download, while asynchronous as

segmented/expedited.

Parameters:

• node-id – Node-ID of the SDO server

• index – object’s index

• subindex – object's subindex

• value-type – type of downloaded value,

one of

u8/i8/u16/i16/u32/i32/u64/i64/file

• value – value to be written, or path to file

with data if value-type is file. Path is

relative to plan file directory.

• timeout – maximum time for SDO to

complete, in milliseconds

sdo-sync/async-upload Starts SDO upload from a remote server as a client

node. sdo-async-upload does not complete

immediately, runs in background until completion,

timeout, or simulation stops. sdo-sync-upload

blocks the simulation until transaction is completed, or

timeout hits. Allows uploading data to files.

Synchronous upload will usually be performed as

block upload, while asynchronous as

segmented/expedited.

Parameters:

• node-id – Node-ID of the SDO server

• index – object’s index

• subindex – object's subindex

• value-type – type of downloaded value,

one of

u8/i8/u16/i16/u32/i32/u64/i64/file

• value – path to file with data if value-

type is file, unused otherwise. Path is

relative to plan file directory.

• timeout – maximum time for SDO to

complete, in milliseconds

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 48 of 70

10.4.1.4 dcfnetlintd

CDSSW dcfnetlintd CLI call consist of a single optional option. Nominal execution of the tool (running

it as a daemon) is when no options are provided.

Table 6 lists available options.

Table 6 – dcfnetlintd CLI options.

Option Description
-h,--help Prints help message and finishes CDSSW execution.
-v,--version Prints CDSSW version and finishes its execution.

10.4.2 GUI

For Visual Studio Code manuals and tutorials refer to: https://code.visualstudio.com/docs

For available plugin features refer to 10.3.

10.5 Error messages

10.5.1 CLI

When executed incorrectly the CDSSW produces message prefixed with dcfnetlint: ERROR:

(name of the application depends on exact called CDSSW CLI tool). See 9.7.1 for more details.

In dcfnetlint detected issues result in two kinds of messages:

• error – issue prevented CDSSW CLI to perform further analysis (e.g. parsing error),

• warning – issue resulted from performing one of the available checks.

List of all available linter checks can be found in Table 2. Each linter check corresponds to a specific

requirement, with justification and notes – refer to SRS Annex A [RD1] for details.

10.5.2 GUI

When there’s a configuration issue with Visual Studio Code extension (e.g. a path to one of the tools is

invalid), it shows a message box in bottom-right corner.

Figure 21 – Error message from Visual Studio Code

https://code.visualstudio.com/docs

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 49 of 70

11 Tutorial

11.1 Introduction

This tutorial serves as an extension to the chapter 9. User might start with this chapter, but for complete

overview of the application reading both is recommended. When necessary explicit references are

provided. Chapter 10 provides detailed reference on all available options, it is recommended to read it

after some initial experience with the software, or to search for specific function.

11.2 Getting started

11.2.1 CLI

After performing actions from chapter 9.2.1 CDSSW CLI tools should be ready to use. As mentioned

there – user might choose to add them to the system search path (to be available in every console) or

explicitly pass complete path to the executable when performing any operations. For the sake of the

tutorial, it’s assumed that all the binaries are available via system search path.

11.2.2 GUI

After performing actions from chapter 9.2.2 CDSSW GUI should be ready to use. For complete feature

set following the CDSSW CLI setup (9.2.1) is also necessary.

For users not familiar with the Visual Studio Code, see tutorial offered by the IDE:

• https://code.visualstudio.com/docs/getstarted/getting-started

11.3 Using the software on a typical task

11.3.1 CLI

11.3.1.1 Analysing network node (DCF)

Checking DCF files can be performed using dcfnetlint. DCF file from

Listing 10 will be used for this tutorial, referenced as as master.dcf.

Listing 10 – Content of master.dcf file from tutorial.

[DeviceInfo]

VendorName=N7 Space Sp. z o.o.

VendorNumber=0x004E3753

BaudRate_10=1

BaudRate_20=1

BaudRate_50=1

BaudRate_125=1

BaudRate_250=1

BaudRate_500=1

BaudRate_800=1

BaudRate_1000=1

[MandatoryObjects]

https://code.visualstudio.com/docs/getstarted/getting-started

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 50 of 70

SupportedObjects=3

1=0x1000

2=0x1001

3=0x1018

[OptionalObjects]

SupportedObjects=6

1=0x1005

2=0x1006

3=0x1019

4=0x1280

5=0x1800

6=0x1A00

[ManufacturerObjects]

SupportedObjects=1

1=0x2000

[1000]

ParameterName=Device type

DataType=0x0007

AccessType=ro

[1001]

ParameterName=Error register

DataType=0x0005

AccessType=ro

[1005]

ParameterName=COB-ID SYNC

DataType=0x0007

AccessType=rw

ParameterValue=0x00000080

DefaultValue=0x00000080

[1006]

ParameterName=Communication cycle period

DataType=0x0007

AccessType=rw

DefaultValue=500000

[1018]

SubNumber=5

ParameterName=Identity object

ObjectType=0x09

[1018sub0]

ParameterName=Highest sub-index supported

DataType=0x0005

AccessType=const

DefaultValue=0x04

[1018sub1]

ParameterName=Vendor-ID

DataType=0x0007

AccessType=ro

DefaultValue=0x004E3753

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 51 of 70

[1018sub2]

ParameterName=Product code

DataType=0x0007

AccessType=ro

[1018sub3]

ParameterName=Revision number

DataType=0x0007

AccessType=ro

[1018sub4]

ParameterName=Serial number

DataType=0x0007

AccessType=ro

[1019]

ParameterName=Synchronous counter overflow value

DataType=0x0005

AccessType=rw

DefaultValue=3

[1280]

SubNumber=4

ParameterName=SDO client parameter

ObjectType=0x09

[1280sub0]

ParameterName=Highest sub-index supported

DataType=0x0005

AccessType=const

DefaultValue=0x03

[1280sub1]

ParameterName=COB-ID client -> server (tx)

DataType=0x0007

AccessType=rw

DefaultValue=0x602

[1280sub2]

ParameterName=COB-ID server -> client (rx)

DataType=0x0007

AccessType=rw

DefaultValue=0x582

[1280sub3]

ParameterName=Node-ID of the SDO server

DataType=0x0005

AccessType=rw

DefaultValue=0x02

[1800]

SubNumber=3

ParameterName=TPDO communication parameter

ObjectType=0x09

[1800sub0]

ParameterName=Highest sub-index supported

DataType=0x0005

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 52 of 70

AccessType=const

DefaultValue=0x02

[1800sub1]

ParameterName=COB-ID used by TPDO

DataType=0x0007

AccessType=rw

DefaultValue=$NODEID+0x180

[1800sub2]

ParameterName=Transmission type

DataType=0x0005

AccessType=rw

DefaultValue=0

[1A00]

ParameterName=TPDO mapping parameter

ObjectType=0x09

DataType=0x0007

AccessType=rw

CompactSubObj=1

[1A00Value]

NrOfEntries=1

1=0x20000020

[2000]

ParameterName=TestUnsigned32

DataType=0x0007

AccessType=rw

PDOMapping=1

DefaultValue=0xC0DE1234

To perform a basic consistency check using all available rules, use the command presented on Listing

11.

Listing 11 – dcfnetlint invocation checking the master.dcf file.

$ dcfnetlint master.dcf

master.dcf:114:0: warning: Object 1280 is missing data type definition,

expected data type '0x0022' (SDO_PARAMETER) [od-1280h-datatype]

master.dcf:143:0: warning: Object 1800 is missing data type definition,

expected data type '0x0020' (PDO_COMMUNICATION_PARAMETER) [od-1800h-

datatype]
master.dcf:158:26: error: Cannot parse entry value, $NODEID is undefined

master.dcf:166:0: warning: Object 1A00 has data type '0x0007' (UNSIGNED32),

expected data type '0x0021' (PDO_MAPPING) [od-1A00h-datatype]

$ echo $?
1

Linter has detected some issues with that file and finished with non-zero code. One of the issue points

to missing $NODEID, which can be fixed by providing it via argument (in base 10), as presented on

Listing 12.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 53 of 70

Listing 12 – dcfnetlint invocation with Node-ID set to 100.

$ dcfnetlint --node-id=100 master.dcf

master.dcf:114:0: warning: Object 1280 is missing data type definition,

expected data type '0x0022' (SDO_PARAMETER) [od-1280h-datatype]

master.dcf:143:0: warning: Object 1800 is missing data type definition,

expected data type '0x0020' (PDO_COMMUNICATION_PARAMETER) [od-1800h-

datatype]

master.dcf:166:0: warning: Object 1A00 has data type '0x0007' (UNSIGNED32),
expected data type '0x0021' (PDO_MAPPING) [od-1A00h-datatype]

The remaining issues point to missing/invalid data type definitions in some objects. However, they may

be treated as false positives (for example, if used CANopen stack does not require explicit definitions

for SDO/PDO parameters and communication mappings) and disabled. To configure performed checks,

--checks argument can be used, as seen on Listing 13.

Listing 13 – Setting the list of enabled dcfnetlint checks.

$ dcfnetlint --node-id=100 --checks="*,-od-1280h-datatype,-od-1800h-

datatype,-od-1A00h-datatype" master.dcf

$ echo $?
0

--checks argument accepts ECMAScript, case-insensitive regular expressions (with minor difference

of asterisk (*) working like glob) separated by commas (,) with optional minus sign (-) prefix that

indicates the check should be disabled. The list of checks is processed from left to right. Using this

argument overrides the default behaviour of enabling all checks – instead list starts as empty and is

populated using the arguments. In this example, the first check enables all the checks, and next ones

disable the checks that appeared earlier. Notice the list of checks is in quotes – some shells may try to

expand the asterisks, which makes no sense in that context, so it’s recommended to wrap the list in

single- (‘) or double-quotes (“).

To verify the list of performed checks, use --list-enabled-checks flag, as in Listing 14.

Listing 14 – Listing enabled linter checks.

$ dcfnetlint --list-enabled-checks --checks="dcf-*"

dcf-comments-line-consistency

dcf-comments-line-length

dcf-comments-lines-missing

...

As mentioned before, asterisk is special and matches zero or more alphanumeric characters and dashes

without prefixing for convenience. To list all supported checks, use --list-all-checks flag.

Linter also can print the content of object dictionary based on provided DCF file, via --dump-objdict

argument. An example is presented on Listing 15.

Listing 15 – Dumping the content of node's object dictionary

$ dcfnetlint --dump-objdict master.dcf

[1000]

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 54 of 70

ParameterName=Device type

ObjectType=0x07

DataType=0x0007

AccessType=ro

...

The output is in DCF file format, but it may be different from DCF file provided as input – for example,

compact sub objects will be expanded to full definitions, and metadata (like DeviceInfo section) will

be lost.

dcfnetlint can be used to check validity of a CANopen network, if provided with CPJ file. Let’s

create a new DCF file describing slave node and call it slave.dcf. The content of that file is in Listing

16.

Listing 16 – Content of slave.dcf file.

[DeviceInfo]

VendorName=N7 Space Sp. z o.o.

VendorNumber=0x004E3753

BaudRate_10=1

BaudRate_20=1

BaudRate_50=1

BaudRate_125=1

BaudRate_250=1

BaudRate_500=1

BaudRate_800=1

BaudRate_1000=1

[MandatoryObjects]

SupportedObjects=3

1=0x1000

2=0x1001

3=0x1018

[OptionalObjects]

SupportedObjects=0

[ManufacturerObjects]

SupportedObjects=2

1=0x2000

2=0x2001

[1000]

ParameterName=Device type

DataType=0x0007

AccessType=ro

[1001]

ParameterName=Error register

DataType=0x0005

AccessType=ro

[1018]

SubNumber=5

ParameterName=Identity object

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 55 of 70

ObjectType=0x09

[1018sub0]

ParameterName=Highest sub-index supported

DataType=0x0005

AccessType=const

DefaultValue=0x04

[1018sub1]

ParameterName=Vendor-ID

DataType=0x0007

AccessType=ro

[1018sub2]

ParameterName=Product code

DataType=0x0007

AccessType=ro

[1018sub3]

ParameterName=Revision number

DataType=0x0007

AccessType=ro

[1018sub4]

ParameterName=Serial number

DataType=0x0007

AccessType=ro

[2000]

ParameterName=TestUnsigned64

DataType=0x001B

AccessType=rw

DefaultValue=0x1234567890ABCDEF

[2005]

ParameterName=TestDomain

ObjectType=0x02

DataType=0x000F

AccessType=rw

UploadFile=slave-upload-data.txt

DownloadFile=slave-download-data.txt

And the network file, network.cpj, as on Listing 17.

Listing 17 – Content of network.cpj file.

[Topology]

Nodes=3

Node1Present=0x1

Node1DCFName=master.dcf

Node2Present=0x1

Node2DCFName=slave.dcf

Node5Present=0x1

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 56 of 70

Node5DCFName=nonexistent-slave.dcf

Checking the network works the same as checking the DCF file, except the linter will return issues

detected in every DCF file in the network, CPJ file, and the network itself. The command (and it’s result)

is shown on Listing 18.

Listing 18 – Result of linting a CANopen network.

dcfnetlint network.cpj

master.dcf:114:0: warning: Object 1280 is missing data type definition,

expected data type '0x0022' (SDO_PARAMETER) [od-1280h-datatype]

master.dcf:141:13: warning: The Node-ID 0x002 (2) is not SDO server [net-
sdo-matching-client-server]

master.dcf:143:0: warning: Object 1800 is missing data type definition,

expected data type '0x0020' (PDO_COMMUNICATION_PARAMETER) [od-1800h-

datatype]

master.dcf:166:0: warning: Object 1A00 has data type '0x0007' (UNSIGNED32),

expected data type '0x0021' (PDO_MAPPING) [od-1A00h-datatype]

network.cpj:1:0: warning: The network does not contain SYNC producer. [net-

sync-one-producer]

network.cpj:11:14: warning: File 'nonexistent-slave.dcf' does not exist

[cpj-topology-existing-dcfs]

slave.dcf:46:2: warning: Missing object '2001' referenced in field '2' in

section 'ManufacturerObjects' [dcf-manufacturerobjects-consistency]

slave.dcf:95:0: warning: Object '2005' is not used in MandatoryObjects nor
OptionalObjects nor ManufacturerObjects [dcf-object-consistency]

As in the previous example, unwanted checks can be silenced with --checks argument. Some checks

are always reported for the CPJ file as a whole (first character of the file) – those are related to the state

of the network, in this case linter have not found a SYNC producer object because the COB-ID SYNC

parameter’s value has SYNC generation bit set to 0. When the ParameterValue of object 1005 in

master.dcf is changed to 0x40000080, the warning disappears. The slave.dcf issues are caused

by invalid object index (should be 2001 instead of 2005). SDO server related warning is caused by the

fact that linter does not consider default server to be enabled, if it is – the warning can be disabled. Non-

existent node should be removed, and the number of nodes in the network should be changed to 2.

11.3.1.2 Capturing and analysing network traffic

To analyse network traffic, it must be captured using candump tool. Let’s consider the following traffic

log from the nodes in the network described in previous part of the tutorial (after applying fixes

mentioned there). The log was captured using candump –f can.log vcan-cdssw command, and

is presented on Listing 19.

Listing 19 – Example candump log from tutorial network.

(1752679501.156743) vcan-cdssw 702#00

(1752679501.156759) vcan-cdssw 701#00

(1752679501.157186) vcan-cdssw 602#4000200000000000

(1752679501.157262) vcan-cdssw 582#4100200008000000

(1752679501.157286) vcan-cdssw 602#6000000000000000

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 57 of 70

(1752679501.157324) vcan-cdssw 582#00EFCDAB90785634

(1752679501.157349) vcan-cdssw 602#7000000000000000

(1752679501.157362) vcan-cdssw 582#1D12000000000000

(1752679501.463671) vcan-cdssw 080#01
(1752679502.020113) vcan-cdssw 080#02

(1752679502.020176) vcan-cdssw 181#3412DEC0

(1752679502.419479) vcan-cdssw 602#2100200008000000

(1752679502.419588) vcan-cdssw 582#6000200000000000

(1752679502.419617) vcan-cdssw 602#0078563412DDCCBB

(1752679502.419641) vcan-cdssw 582#2000000000000000

(1752679502.419664) vcan-cdssw 602#1DAA000000000000

(1752679502.419694) vcan-cdssw 582#3000000000000000

(1752679502.479766) vcan-cdssw 080#03

(1752679503.122592) vcan-cdssw 080#04

(1752679503.122648) vcan-cdssw 181#3412DEC0

(1752679503.541131) vcan-cdssw 080#05
(1752679503.541550) vcan-cdssw 602#4000200000000000

(1752679503.541606) vcan-cdssw 582#4100200008000000

(1752679503.541638) vcan-cdssw 602#6000000000000000

(1752679503.541671) vcan-cdssw 582#0078563412DDCCBB

(1752679503.541701) vcan-cdssw 602#7000000000000000
(1752679503.541734) vcan-cdssw 582#1DAA000000000000

(1752679503.967062) vcan-cdssw 080#01

(1752679503.967121) vcan-cdssw 181#3412DEC0

(1752679504.603244) vcan-cdssw 080#02

Using dcfnetmon this log can be transformed into text or HTML report containing details of the traffic

and performed transactions. To see the details in text form, use the command presented on Listing 20.

Listing 20 – Call to dcfnetmon analyzing the candump log.

$ dcfnetmon --network=network.cpj --output-format=text can.log

 0 1752679501.156743 Dev: vcan-cdssw Origin: main CanID: 1794 (0x702)

NodeID: 2 (0x2) Length: 1 Data: 00

 HB state: Boot-Up
 1 1752679501.156759 Dev: vcan-cdssw Origin: main CanID: 1793 (0x701)

NodeID: 1 (0x1) Length: 1 Data: 00

 HB state: Boot-Up

 2 1752679501.157186 Dev: vcan-cdssw Origin: main CanID: 1538 (0x602)

NodeID: 2 (0x2) Length: 8 Data: 40 00 20 00 00 00 00 00

 SDO client->server: InitiateUploadRequest in transaction 0
 | Object 2000 00
...

HTML report can be generated by using --output-format=html argument and providing the output

file name via --output argument, as seen on Listing 21. The generated report is presented on Figure

22.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 58 of 70

Listing 21 – dcfnetmon call generating HTML report.

$ dcfnetmon --network=network.cpj --output-format=html --

output=traffic.html can.log

Figure 22 – CANopen traffic analysis report.

A detailed description of the generated HTML report is provided in chapter 11.3.2.3.

dcfnetmon supports multiple candump log formats. The format of candump log is auto-detected by

dcfnetmon, but it can also specified manually if preferred. Timestamp's existence is also auto-detected,

but only absolute timestamps are supported. By default, candump -f outputs the traffic with absolute

timestamps in file format. When candump is logging traffic to console, it uses console format without

timestamps, which is supported with dcfnetmon --format=console --timestamp=none

command. User can pipe candump directly to dcfnetmon in that mode, but keep in mind that

dcfnetmon will output the analyzed traffic only after the candump exits, so if the link does not go

down by itself (or if candump –D is used), it’s recommended to use candump -T or -n to set the idle

timeout/frame limit, or kill candump manually with external script/command. Example call of candump

with dcfnetmon is shown on Listing 22.

Listing 22 – Example of candump output being piped directly to dcfnetmon.

$ candump vcan-cdssw | dcfnetmon --format=console --timestamp=none

--output-format=text --network=network.cpj
 0 Dev: vcan-cdssw Origin: main CanID: 1794 (0x702) NodeID: 2 (0x2)

Length: 1 Data: 00

 HB state: Boot-Up

 1 Dev: vcan-cdssw Origin: main CanID: 1793 (0x701) NodeID: 1 (0x1)

Length: 1 Data: 00

 HB state: Boot-Up

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 59 of 70

 2 Dev: vcan-cdssw Origin: main CanID: 1538 (0x602) NodeID: 2 (0x2)

Length: 8 Data: 40 00 20 00 00 00 00 00

 SDO client->server: InitiateUploadRequest in transaction 0

 | Object 2000 00
...

11.3.1.3 Simulating network traffic

dcfnetsim tool can be used to simulate the behavior of a single CANopen node (or the whole network,

although with very limited functionality). The simulation is performed based on the network (CPJ) file,

and simulation plan in YAML format, and it generates CAN traffic on a user-selected interface. For the

sake of this tutorial, a virtual CAN interface called vcan-cdssw will be used. To create that interface,

use the commands from Listing 23 (notice that super-user permissions are required).

Listing 23 – Creating a new virtual CAN interface (requires super-user privileges).

$ ip link add dev vcan-cdssw type vcan

$ ip link set vcan-cdssw up

To perform the simulation, a plan file is required. This file contains a list of sequential steps of the

simulation. Listing 24 shows a simple example of a plan that resets the node (or all nodes, depending on

the dcfnetsim arguments), waits for 500 milliseconds, sends a custom CAN frame, waits another

500ms and stops the simulation – save it as plan.yml.

Listing 24 – Example simulation plan.

config:

 cpj-file: network.cpj

 master-node-id: 1

steps:

 - type: reset
 - type: wait

 duration: 500

 - type: send-can-frame

 can-id: 0xAA

 data: [0xC0, 0xDE]

 - type: wait
 duration: 500
 - type: stop

Listing 25 shows how to execute that simulation, and what logs should be expected.

Listing 25 – Execution of a simulation.

$ dcfnetsim --plan=plan.yml --interface=vcan-cdssw

[2025-07-23T14:49:24.673363764+0200] Found slave node 2 with DCF file
slave.dcf

[2025-07-23T14:49:24.679983316+0200] Found master node 1 with DCF file

master.dcf

[2025-07-23T14:49:24.680223404+0200] Starting simulator on CAN interface

vcan-cdssw based on plan plan.yml

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 60 of 70

[2025-07-23T14:49:24.680815142+0200] Master node (ID: 1) created

[2025-07-23T14:49:24.680867281+0200] Resetting master...

[2025-07-23T14:49:24.681112759+0200] Idling for 500ms...

[2025-07-23T14:49:25.182182712+0200] Sending CAN packet with ID: AA, flags:
00, data: C0 DE

[2025-07-23T14:49:25.182356123+0200] Idling for 500ms...

[2025-07-23T14:49:25.683401901+0200] Stopping the simulator!
[2025-07-23T14:49:25.683517822+0200] MasterNode destroyed

The simulator outputs human-readable information, but not the traffic. In order to capture the generated

frames, candump should be used. Both simulator and candump can be run in a single command, as seen

on Listing 26 – it’s recommended to specify the idle time/frame limit for candump to force it to exit

gracefully.

Listing 26 – Running a simulation and logging CAN traffic in parallel.

$ dcfnetsim --plan=plan.yml --interface=vcan-cdssw & candump vcan-cdssw -f

sim.log -T 1000

[1] 100718

Disabled standard output while logging.

Enabling Logfile 'sim.log'
[2025-07-23T14:50:10.510325443+0200] Found slave node 2 with DCF file

slave.dcf

[2025-07-23T14:50:10.517006555+0200] Found master node 1 with DCF file

master.dcf

[2025-07-23T14:50:10.517119320+0200] Starting simulator on CAN interface

vcan-cdssw based on plan plan.yml

[2025-07-23T14:50:10.517592190+0200] Master node (ID: 1) created

[2025-07-23T14:50:10.517661232+0200] Resetting master...

[2025-07-23T14:50:10.517862435+0200] Idling for 500ms...

[2025-07-23T14:50:11.021070556+0200] Sending CAN packet with ID: AA, flags:

00, data: C0 DE

[2025-07-23T14:50:11.021290104+0200] Idling for 500ms...
[2025-07-23T14:50:11.522350129+0200] Stopping the simulator!

[2025-07-23T14:50:11.522556271+0200] MasterNode destroyed
[1] + 100718 done dcfnetsim --plan=plan.yml --interface=vcan-cdssw

After running the command specified above, sim.log file should be created with content similar to

Listing 27.

Listing 27 – CAN traffic generated by simulator.

(1753275010.517850) vcan-cdssw 701#00

(1753275010.826648) vcan-cdssw 080#01

(1753275011.021219) vcan-cdssw 0AA#C0DE

(1753275011.318789) vcan-cdssw 080#02

The reset step is required for most simulations – after performing it, the node starts its NMT state

machine and begins processing CANopen events. Wait step is used to delay the next step of simulation

– during that time, the nodes keep processing the network events (like SYNC, PDOs, SDOs, etc.). Stop

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 61 of 70

step is required if the simulation should to end by itself – otherwise, it will keep running until manually

stopped by the user by killing the dcfnetsim process.

Simulator supports variety of steps that can be used to send CAN frames, write the data to simulated

node’s object dictionary, and configure/trigger SYNC, PDO and SDO services. Full list of supported

steps and their arguments can be found in chapter 10.4.1.3.

dcfnetsim can also simulate other network nodes – although in a very limited capacity. In the logs,

user can notice that it found two nodes in the network – master node is the one that’s currently being

simulated, while all the other ones are slave nodes. Slave node simulation can be used, for example, to

simulate an SDO transaction without the need of other physical nodes to exists on the network. By

default, only the master node is simulated – to enable slave node simulation, use --slave-

simulation argument.

11.3.2 GUI

After installing Visual Studio Code extension and configuring the paths to CDSSW tools, as described

in chapter 9.2.2, it should be ready to work. Opening the directory with files created during the previous

chapter of the tutorial and viewing the master.dcf file should result in a similar view to the one on

Figure 23.

Figure 23 - Visual Studio Code with properly configured DCF tools

If the syntax highlighting is active, and user can see the issues detected in that file, then the plugin is

installed and configured correctly.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 62 of 70

11.3.2.1 Linting and modifying the network

LSP will continuously lint the network detected in the current workspace and provide real-time

diagnostics and utility features to Visual Studio Code.

To simplify the creation of common objects in DCF file, CANopen Network Editor provides multiple

snippets. To insert a snippet, trigger the command menu with Ctrl+Shift+P shortcut and use the

“Snippets: Insert Snippet” option. User should see a list of snippets similar to one on Figure 24.

Figure 24 – List of available snippets.

After selecting one of the snippets, the editor will automatically insert selected object (and required sub-

objects) and fill the fields with standard-defined values, as seen on Figure 25. Remaining fields must be

filled manually, and editor provides a handy way of jumping between them using Tab key.

Figure 25 – Inserted object definition snippet.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 63 of 70

Keep in mind, however, that newly created objects must be added to

Mandatory/Optional/ManufacturerObject sections manually.

All the objects (and their properties) in currently opened DCF file are visible in Outline view, shown on

Figure 26.

Figure 26 – Outline view of a DCF file.

Clicking on an item in that view will move the cursor to selected property, and double-clicking will

select it.

The plugin also provides an overview of the network – see Figure 27. If a CPJ file is found in the current

workspace, CANopen Network view will show a tree with nodes and their objects, along with their

properties.

Figure 27 – CANopen network view.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 64 of 70

This view allows user to easily add new nodes to the network. To create a new network node, right-click

on the network and select “New CANopen node” option.

An input window will show at the top of the screen, asking for the Node-ID, as seen on Figure 28

Figure 28 - Setting the Node-ID of created node.

After providing it, user can either choose to create a node from scratch, or using an existing DCF file. If

“Create new DCF file” option is chosen, an empty DCF file will be created, and a new entry will be

added to the CPJ file. Note that the “Nodes” option in the “Topology” section will remain unchanged,

so it must be manually set to the correct number of nodes afterwards.

If the “Use existing DCF file” option is chosen, a file selection window will appear, similar to one on

Figure 29.

Figure 29 – Selecting an existing DCF file for new CANopen node.

After selecting the DCF, a new entry will be added to the CPJ file. The DCF file will not be copied or

modified.

This view also provides a way of adding new PDO parameters/mappings and SDO clients/servers to

selected nodes, as presented on Figure 30. To add one, right-click a node in the network tree and select

the option from the list.

Figure 30 – Adding new objects to CANopen node via network view.

After that, a snippet will appear in the selected DCF file. It works just like the snippets described earlier.

11.3.2.2 Editing network simulation plans

Visual Studio Code provides syntax highlighting for YAML files out of the box, however the DCF

extension also provides snippets for all supported simulation steps and simulation file template.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 65 of 70

Usage of those snippets is exactly the same as snippets for DCF files, except they will be enabled only

in YAML files. In order to select a snippet, either start writing the step name (list should automatically

pop up and let user select appropriate snippet), or open the command window (Ctrl+Shift+P) and select

“Snippets: Insert snippet” option.

11.3.2.3 Performing network simulations

The editor is integrated with dcfnetsim, and provides a Visual Studio Code command to run

node/network simulation. To start one, user must first open the simulation plan file and focus the editor

on it. Then, open the command window (Ctrl+Shift+P) and select the “Run dcfnetsim” option, as shown

on Figure 31.

Figure 31 – Executing currently opened simulation plan.

Afterwards, user will be asked for the network interface name (see Figure 32), and whether to enable

the slave node simulation or not.

Figure 32 – Selecting the CAN interface for simulation.

After specifying the arguments, a new command line window will be created (or reused) and

dcfnetsim will begin execution – it should look similarly to the command line window on Figure 33.

The plugin currently does not support invoking candump in parallel, so in order to record the simulation

session it must be invoked manually.

Figure 33 – Network simulation logs.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 66 of 70

11.3.2.4 Generating and viewing dcfnetmon report

The plugin also provides integration with dcfnetmon. To generate and view a report, open the command

window (Ctrl+Shift+P) and select the “Run dcfnetmon” option. User will be asked for the path of

candump log file, and its format (user can use “auto” to trigger auto-detection of the log/timestamp

format). After specifying those, a new tab will open in Visual Studio Code with the generated report, as

shown on Figure 34.

Figure 34 – Generated monitor report in Visual Studio Code.

The generated report is interactive. Clicking on a frame will highlight all the related rows, for example

– clicking on a SYNC frame will highlight all the other SYNC frames, as seen on Figure 35. User can

also move between the frames using W/S keys. Holding Shift key while navigating with keyboard will

restrict the movement to the currently selected group of frames.

Figure 35 – Group highlighting in the monitor report.

Some frames contain additional information that isn’t visible by default. For example, after clicking on

a PDO frame, a box (see Figure 36) with more details will appear next to the table.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 67 of 70

Figure 36 – Details of a PDO frame.

Those details contain the interpreted data from the selected frame, and information about the object

specifying the PDO. Similar details are provided for SDO transactions, as shown on Figure 37. It’s also

possible to save the data transferred via SDO directly to a binary file.

Figure 37 – Details of an SDO frame and transaction.

The table header contains arrows that, when clicked on, reveal the filters (see Figure 38). Filtering can

be done based on the frame timestamp (if provided), CAN link, CAN ID, Node ID, and frame type.

Figure 38 – CAN-ID filter in monitor report.

When the report is opened in Visual Studio Code, the “Save HTML report” button will be created above

the table. Clicking it will open the file selection window (see Figure 39) and copy the report from

memory to a selected file.

Figure 39 – Saving the generated report as HTML file.

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 68 of 70

12 Analytical Index

N/A

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 69 of 70

13 Lists

13.1 List of Tables

Table 1 – dcfnetlint CLI options. ... 24
Table 2 – Linter checks. .. 25
Table 3 – dcfnetmon CLI options. ... 41
Table 4 – dcfnetsim CLI options. .. 42
Table 5 – dcfnetsim simulation plan steps. .. 43
Table 6 – dcfnetlintd CLI options. ... 48

13.2 List of Figures

Figure 1 – CDSSW GUI overview .. 12
Figure 2 – dcfneteditor installation from Marketplace. ... 14
Figure 3 – dcfnetlint manual installation. .. 14
Figure 4 – dcfneteditor settings inside Visual Studio Code. ... 14
Figure 5 – Message with CDSSW tool call error .. 18
Figure 6 – Syntax highlighting of DCF file in Visual Studio Code .. 20
Figure 7 – Outline view of DCF file in Visual Studio Code ... 20
Figure 8 – Network view in Visual Studio Code .. 21
Figure 9 – Adding new objects to node in network via VSCode .. 21
Figure 10 – List of issues reported by dcfnetlintd in Visual Studio Code ... 21
Figure 11 – Autocompletion of DCF file in Visual Studio Code .. 22
Figure 12 – Visual Studio Code commands for running monitor and simulator................................... 22
Figure 13 – Simulation interface selection dialog ... 22
Figure 14 – Simulation mode selection dialog .. 22
Figure 15 – dcfnetsim output in integrated Visual Studio Code terminal.. 23
Figure 16 – candump trace selection for dcfnetmon .. 23
Figure 17 – CPJ file selection for dcfnetmon .. 23
Figure 18 – candump log format selection for dcfnetmon ... 23
Figure 19 – candump timestamp format selection for dcfnetmon ... 24
Figure 20 – Generated report from dcfnetmon in Visual Studio Code .. 24
Figure 21 – Error message from Visual Studio Code .. 48
Figure 22 – CANopen traffic analysis report. ... 58
Figure 23 - Visual Studio Code with properly configured DCF tools ... 61
Figure 24 – List of available snippets.. 62
Figure 25 – Inserted object definition snippet. .. 62
Figure 26 – Outline view of a DCF file. .. 63
Figure 27 – CANopen network view. .. 63
Figure 28 - Setting the Node-ID of created node. ... 64
Figure 29 – Selecting an existing DCF file for new CANopen node. ... 64
Figure 30 – Adding new objects to CANopen node via network view. .. 64
Figure 31 – Executing currently opened simulation plan. ... 65
Figure 32 – Selecting the CAN interface for simulation. .. 65
Figure 33 – Network simulation logs. ... 65
Figure 34 – Generated monitor report in Visual Studio Code. .. 66
Figure 35 – Group highlighting in the monitor report. .. 66

 CANopen Library Toolset Doc: CAN-N7S-CDSDP-SUM

 Development Support SW – Software User Manual Date: 2025-09-08

 Issue: 1.2

 N7 Space Sp. z o.o. Page: 70 of 70

Figure 36 – Details of a PDO frame. ... 67
Figure 37 – Details of an SDO frame and transaction. .. 67
Figure 38 – CAN-ID filter in monitor report. .. 67
Figure 39 – Saving the generated report as HTML file. .. 67

13.3 List of Listings

Listing 1 – Unpacking CDSSW CLI from TAR BZIP2 file (recommended for Linux). 13
Listing 2 – Checking CDSSW CLI version. ... 13
Listing 3 – Example dcfnetlint call. ... 15
Listing 4 – Example dcfnetmon call. ... 15
Listing 5 – Example dcfnetmon call with candump. ... 15
Listing 6 – Example dcfnetsim call. .. 16
Listing 7 – Example of invalid CDSSW CLI call. .. 18
Listing 8 – Example of CDSSW CLI help call. ... 19
Listing 9 – Simulation plan layout. ... 42
Listing 10 – Content of master.dcf file from tutorial. .. 49
Listing 11 – dcfnetlint invocation checking the master.dcf file. ... 52
Listing 12 – dcfnetlint invocation with Node-ID set to 100. .. 53
Listing 13 – Setting the list of enabled dcfnetlint checks. .. 53
Listing 14 – Listing enabled linter checks. .. 53
Listing 15 – Dumping the content of node's object dictionary .. 53
Listing 16 – Content of slave.dcf file. .. 54
Listing 17 – Content of network.cpj file. ... 55
Listing 18 – Result of linting a CANopen network. .. 56
Listing 19 – Example candump log from tutorial network. .. 56
Listing 20 – Call to dcfnetmon analyzing the candump log. ... 57
Listing 21 – dcfnetmon call generating HTML report. ... 58
Listing 22 – Example of candump output being piped directly to dcfnetmon. 58
Listing 23 – Creating a new virtual CAN interface (requires super-user privileges). 59
Listing 24 – Example simulation plan. .. 59
Listing 25 – Execution of a simulation. ... 59
Listing 26 – Running a simulation and logging CAN traffic in parallel. .. 60
Listing 27 – CAN traffic generated by simulator. ... 60

	1 Introduction
	2 Applicable and reference documents
	2.1 Applicable documents
	2.2 Reference documents

	3 Terms, definitions and abbreviated terms
	4 Conventions
	5 Purpose of the Software
	6 External view of the software
	7 Operations environment
	7.1 General
	7.2 Hardware configuration
	7.3 Software configuration
	7.4 Operational constraints

	8 Operations basics
	9 Operations manual
	9.1 General
	9.2 Set‐up and initialization
	9.2.1 CLI
	9.2.2 GUI

	9.3 Getting started
	9.4 Mode selection and control
	9.5 Normal operations
	9.5.1 CLI
	9.5.1.1 dcfnetlint
	9.5.1.2 dcfnetmon
	9.5.1.3 dcfnetsim
	9.5.1.4 dcfnetlintd

	9.5.2 GUI

	9.6 Normal termination
	9.6.1 CLI
	9.6.1.1 dcfnetlint
	9.6.1.2 dcfnetmon
	9.6.1.3 dcfnetsim
	9.6.1.4 dcfnetlintd

	9.6.2 GUI

	9.7 Error conditions
	9.7.1 CLI
	9.7.2 GUI

	9.8 Recover runs

	10 Reference manual
	10.1 Introduction
	10.2 Help method
	10.3 Screen definitions and operations
	10.3.1 Syntax highlighting
	10.3.2 Outline
	10.3.3 Network view
	10.3.4 Linter
	10.3.5 Snippets
	10.3.6 Simulator integration
	10.3.7 Network monitoring

	10.4 Commands and operations
	10.4.1 CLI
	10.4.1.1 dcfnetlint
	10.4.1.2 dcfnetmon
	10.4.1.3 dcfnetsim
	10.4.1.4 dcfnetlintd

	10.4.2 GUI

	10.5 Error messages
	10.5.1 CLI
	10.5.2 GUI

	11 Tutorial
	11.1 Introduction
	11.2 Getting started
	11.2.1 CLI
	11.2.2 GUI

	11.3 Using the software on a typical task
	11.3.1 CLI
	11.3.1.1 Analysing network node (DCF)
	11.3.1.2 Capturing and analysing network traffic
	11.3.1.3 Simulating network traffic

	11.3.2 GUI
	11.3.2.1 Linting and modifying the network
	11.3.2.2 Editing network simulation plans
	11.3.2.3 Performing network simulations
	11.3.2.4 Generating and viewing dcfnetmon report

	12 Analytical Index
	13 Lists
	13.1 List of Tables
	13.2 List of Figures
	13.3 List of Listings

		2025-09-08T14:27:57+0200
	Konrad Grochowski

		2025-09-09T13:33:51+0200
	Mateusz Dyrdół

		2025-09-09T15:59:36+0200
	Seweryn Ścibior

